
TO-Protect 2.x Security Target

Release TODO001_E
15-Nov-2022

Authored by Trusted Objects

Table of contents TODO001_E

Table of contents
1 Introduction 1

1.1 ST reference . 1
1.2 Platform reference . 1
1.3 Included guidance documents . 2

1.3.1 Followed security guidances . 2
1.3.2 Roles . 3

1.4 Platform functional overview and description . 3
1.4.1 The TOE boundary . 4
1.4.2 TLS dialog example . 5
1.4.3 The TOE Structure . 5

1.4.3.1 TO-Protect . 5
1.4.3.2 The secure storage . 6
1.4.3.3 The perso API . 7
1.4.3.4 The secure Upgrade . 7
1.4.3.5 LibTO and the helpers . 7
1.4.3.6 The application . 7
1.4.3.7 The hardware platform . 7

2 Security Objectives for the Operational environment 8
2.1 Platform Objectives for the Operational Environment . 8

2.1.1 Securing the presence of a debug or Bootloader functionality 8
2.1.2 Secure provisioning and preparative procedures (AGD_PRE.1) 9

3 Security requirements and implementation 10
3.1 Security Assurance Requirements . 10

3.1.1 Flaw Reporting Procedures (ALC_FLR.2) . 10
3.1.2 Vulnerability Survey (AVA_VAN.1) . 10
3.1.3 Survey of potential vulnerabilities . 11

3.1.3.1 Out-of-scope vulnerabilities . 11
3.1.3.2 Considered vulnerabilities . 12

3.2 Security Functional Requirements . 12
3.2.1 Attestation of platform genuineness . 12
3.2.2 Verification of Platform Identity . 13
3.2.3 Secure Update of Platform . 13
3.2.4 Secure Initialization of Platform . 13
3.2.5 Attestation of Platform State . 13
3.2.6 Secure Communication Support (ECDHE_ECDSA case) 14
3.2.7 Secure Communication Support (PSK case) . 14
3.2.8 Physical Attacker Resistance . 15

4 Mapping and sufficiency rationales 16
4.1 SESIP1 sufficiency . 16

5 Potential vulnerabilities 17
5.1 Defence against fault injection . 17
5.2 Defence against side-channel attacks . 17
5.3 During the Handshake (using ECDHE-ECDSA) . 17

5.3.1 Fault attack on the clients random generation . 18
5.3.2 Fault attack on the ephemeral random private key generation 19

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

i / 29

Table of contents TODO001_E

5.3.3 Side-channel attack on the ephemeral public key generation 19
5.3.4 Fault attack on the ephemeral public key generation 19
5.3.5 Side-channel attack on the signing of all previous messages 19
5.3.6 Fault attack on the servers certificate verification . 19
5.3.7 Side-channel attack on the ECDHE (pre_master_secret calculation) 20
5.3.8 Fault attack on the ECDHE (pre_master_secret calculation) 20
5.3.9 Side-channel attack on the master_secret calculation 20
5.3.10 Side-channel attack on the finished calculation and checking 20
5.3.11 Fault attack on the finished . 21
5.3.12 Side-channel attack on the computation of the key_block 21
5.3.13 Fault attack on the computation of the key_block 21

5.4 During the Handshake (using PSK) . 21
5.5 Abbreviated handshake, using either ECDHE_ECDSA or PSK 22
5.6 Exchange of encrypted payloads (client to the server case) 23

5.6.1 Fault attack on the generation of the random IV . 24
5.6.2 Side-channel attack on the MAC computation . 24
5.6.3 Fault attack on the MAC computation . 24
5.6.4 Side-channel attack on the CBC encryption . 24
5.6.5 Fault attacks on the CBC encryption (key recovery) 24
5.6.6 Fault attacks on the CBC encryption (data recovery) 25

5.7 Exchange of encrypted payloads (server to the client case) 25
5.7.1 Side-channel attack on the CBC decryption . 25
5.7.2 Fault injection attack on the MAC verification . 25

6 Security Impact Analysis 26

7 Configuration Management 27

8 Document History 28

Bibliography 29

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

ii / 29

Chapter 1. Introduction TODO001_E

1. Introduction
The Security Target describes the Platform (in this chapter) and the exact security properties of the Platform
that are evaluated against [SESIP] (in chapter Security requirements and implementation) that a potential
consumer can rely upon the product upholding if they fulfill the objectives for the environment (in chapter
Security Objectives for the operational environment).

1.1 ST reference

TO-Protect 2.x Security Target, Release TODO001_E, Trusted-Objects, 15 Nov 2022.

1.2 Platform reference

Table 1.1: References for the target

Element name Value

TOE name TO-Protect TLS

TOE version 2.1.6

TOE identification TOPR-TP-00-2.1.6 and
TOPR-TP-01-2.1.6

TOE Type Software library

The TOE is identified under 2 references, please refer to Security Impact Analysis for a security impact
analysis of this point.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

1 / 29

Chapter 1. Introduction
1.3. Included guidance documents TODO001_E

1.3 Included guidance documents

The following documents are included with the platform:

Table 1.2: Documents associated to the target

Reference Name Version

[Manual] TO-Protect 2.x User Manual TODO002_E

[Admin] Administration commands TODO003_B

[ALC_FLR] Flaw remediation TODO004_B

[Upgrade] Secure upgrade Manual TODO005_B

[Errata] TO-Protect 2.x Errata sheet TODO006_B

[Attacks] TO-Protect 2.x Attacks on TLS TODO007_C

[TLS12] TLS 1.2 specification Final

[DTLS12] DTLS 1.2 specification Final

[PSK-TLS] Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS)

Final

[PSK-TLS-SHA256] Pre-Shared Key Ciphersuites for TLS with SHA256/384 and
AES Galois Counter mode

Final

[TLS-ECC-SUITES] TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES
Galois Counter Mode (GCM)

Final

[AES] ADVANCED ENCRYPTION STANDARD (AES) Final

[HMAC] HMAC: Keyed-Hashing for Message Authentication Final

[Extensions] Transport Layer Security (TLS) Extensions (list) 2021-10-15

[TLS-Extensions] Transport Layer Security (TLS) Extensions Final

[Hash-DRBG] Recommendation for Random Number Generation Using Deter-
ministic Random Bit Generators

SP 800-90A
Revision 1

1.3.1 Followed security guidances

On the top of all specifications, and in order to reach the security objectives, the following guidance have
been taken into accound and respected during the development.

Table 1.3: Security recommendations

Reference Name Version

[TLS-ANSSI] Recommandations de sécurité relatives à TLS. Final

[TLS-weaknesses] Summarizing Known Attacks on Transport . Layer Security
(TLS) and Datagram TLS (DTLS)

Final

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

2 / 29

Chapter 1. Introduction
1.4. Platform functional overview and description TODO001_E

1.3.2 Roles

With TO-Protect, there are 3 roles :

• A User role, able to run any functionality in TO-Protect, including establishing a TLS session, etc.
This role can be played by the application, developed and operated by the end-customer.

• An Upgrader role, played by the part of software responsible of realizing an upgrade from a version N
of the TOE to a superior version.

• An Admin role, which has the responsibility to run the admin commands. These commands are only
accessible to someone having access to the admin keys.

1.4 Platform functional overview and description

This document is the security target for TO-Protect, and is based on [SESIP] methodology, version Public
Release 1.1.

The TOE consists of a binary library to be included along with the end-user application, once integrated
into an application by a developer, it contributes to adding security to an IoT Product, connected to an IoT
management platform. It implements [TLS12] and permits to securely setup a TLS link between an IoT
device and a host server.

It is providing a full-featured TLS implementation, responsible for :

• Managing all TLS-related messages

– Establishing/restoring a session

– Encrypt/Decrypt/sign/verify payloads

• Secure the storage of security-critical assets

– Securely store assets (eg. session keys, private keys, PSK etc)

• Contribute to the IoT security by ensuring basic services :

– Generating secure random, robust against replay attacks, using state-of-the-art algorithms

From a SESIP standpoint, the TOE is a component of the IoT platform. The TOE scope is depicted in
the Fig. 1.1. Only the parts within the red rectangle, named TOE Boundary is to be evaluated. The other
parts, outside this boundary are out-of-scope of this evaluation. For instance, we do not include the secure
upgrade.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

3 / 29

Chapter 1. Introduction
1.4. Platform functional overview and description TODO001_E

1.4.1 The TOE boundary

Fig. 1.1: The TOE boundary

In Fig. 1.1, we can see an application, using TO-Protect through libTO. LibTO is a software library, delivered
as a source which is used to abstract the access to the secure element. We do not figure the physical protocol
used to transport the TLS frames, this is under the applications responsibility to do this. LibTO will take
the messages and perform the call to the right TO-Protect entry point.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

4 / 29

Chapter 1. Introduction
1.4. Platform functional overview and description TODO001_E

1.4.2 TLS dialog example

Fig. 1.2: Synthesis of a TLS dialog between a server and the applicative through TO-Protect

Fig. 1.2 shows how TO-Protect and the embedded application interact each-other in this case. This is only
an example of what could happen if the application receives (green) or wants to send (blue) an encrypted
payload from/to the server. Obviously, in the case of a complete session establishment, the dialog is more
complex and would need much more interaction, but whats important here is the fact all the secrets (keys
essentially) lie into TO-Protect secure storage and are manipulated by it.

1.4.3 The TOE Structure

1.4.3.1 TO-Protect

TO-Protect effectively consists in a binary library made of two main elements :

• The Vector table

– Located at the very start of the binary and contains few information like the version, and some
capability description (what are the options that were used to build the binary, roughly).

– Contains the different always present entry points, like init, fini, as well as an entry point for each
api included into the product.

– This tables size is predictable, no change into an api has any visible impact on the table. Adding
or removing an api entry-point will NOT result in any change in the vector tables structure,
simply the api dispatcher will route the call either to an error message (in the case entry-point
has been removed) or to the newly-introduced feature.

• TO-Protect code itself

– Consisting in the different api dispatchers and the related functionality, performing the necessary
actions.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

5 / 29

Chapter 1. Introduction
1.4. Platform functional overview and description TODO001_E

– Including the secure-storage management

– Performing all cryptographic computations

• TO-Protect security benefits

– Confidentiality : The cryptographic algorithms that TO-Protect implements are used to encryp-
t/decrypt all your dialog with the servers, thus ensuring your data are not observable.

– Authenticity : Each TO-Protect instance can be personalized individually, providing your device
a unique personality which can be used to authenticate it.

– Integrity : TO-Protect ensures that every message sent through the TLS channel has been trans-
mitted as requested.

1.4.3.2 The secure storage

The secure storage is the place where all security-relevant assets are placed. It is a piece of memory, located
into NVM, which will contain the following data elements, stored in a non-readable manner and entirely
shuffled differently each time one of these data elements is changed :

• The main DRBG implements an Hash_DRBG, as specified in [Hash-DRBG], which is used to generate
a different random seed each time TO-Protect is restarted (for instance, at each power-up of the device).
This DRBG, which is one of the first things that TO-Protect uses when performing its initialization is
not observable, and is only used to generate the different seeds that will be used later on during the
session (eg. generate randoms, keys, of simply good enough values used to wipe or randomize buffers.
The original Seed is set in personalization mode.

• The public and private key elements

– Those keys are stored into the secure storage, but have their own masking and integrity mechanism,
in order to ensure that not only they are safe in NVM, but also when transfered into RAM for
conducing cryptographic computations

– If selecting a PSK-only security, those public and private keys may not be present in the product

• The PSK, which security is similar to what is made with the public-keys elements.

• The TLS keys and assets for every available communication slot

– The master-secret, resulting from a successfully opened session, and which is used to resume it

– The session keys, used to encrypt/decrypt and sign/verify the exchanged payloads

• The servers public key

– The X509-certificate issued for this server

– Its public key (extracted from the X509 certificate)

– Its common name

• The main CA

– The public key which will be used to authentify any X-509 certificate

– The related key identifier

• The admin keys

– The encryption/decryption/mac keys

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

6 / 29

Chapter 1. Introduction
1.4. Platform functional overview and description TODO001_E

– The associated capabilities associated to each key

• The upgrade keys

– These keys are device-specific and used to perform the upgrade to a newer TO-Protect version

1.4.3.3 The perso API

This API is not part of TO-Protect, and is used to create the secure-storage first content, during the
personalization phase. It is not available to the end-customer either. It is only listed here for explaining
how the secure-storage is first created. This feature is not deactivated, it is simply not present on the final
product as the secure-storage is loaded already provisioned.

1.4.3.4 The secure Upgrade

The secure upgrade is not part of TO-Protect, and is used solely in case of an upgrade of the TO-Protect
binary to be made on the field, for working-around a security vulnerability or introducing a new functionality.
It performs the update in a secure way, ensuring :

• The new version is newer than the older one, it is not possible to go back to an older release.

• Confidentiality : The new content is encrypted

• Integrity : The upgrade package is digitally signed

• Authenticity : The signing key is solely known to Trusted-Objects

1.4.3.5 LibTO and the helpers

LibTO and the helpers are used to extract the different TLS messages, identify them, extract the information
that is really relevant to TO-Protect, and finally call the right entry-point.

1.4.3.6 The application

This is the application that will benefit from TO-Protect, it is implementing the protocol used to transmit
the TLS messages (eg. TCP, TCP over USB, wifi etc.).

1.4.3.7 The hardware platform

All these software elements run on a hardware platform, not figured here, but supposingly implementing an
ARM Cortex CPU (Cortex-M0/3/4/7/23/33/35P/55). No specific security features are expected from it,
simply the presence of embedded NVM is required.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

7 / 29

Chapter 2. Security Objectives for the Operational environment TODO001_E

2. Security Objectives for the Operational environ-
ment
In order for TO-Protect to fulfil its security requirements, we demand that the operational environment
achieves the following.

2.1 Platform Objectives for the Operational Environment

UNIQUE_INSTANCE

Each instance of TO-Protect must be associated with a unique content of its secure-storage. Dur-
ing production, secure-storage content is not re-used. This is explained in the Secure provisioning
and preparative procedures (AGD_PRE.1) section.

DEBUG_DISABLED

At the last stages of production, any debug/bootloader feature must be either deactivated or
configured in a way it disallows the direct reading of the TOE. This is explained in the Securing
the presence of a debug or Bootloader functionality section.

TRUSTED_PRODUCTION

The TOE is able to protect the assets after their loading, under the strict condition of a
trusted production site. This is explained in the Secure provisioning and preparative procedures
(AGD_PRE.1) section.

SECURE_UPGRADE

With each new upgrade of TO-Protect comes some recommendations and source code to be
integrated in order to perform a correct platform upgrade. These procedures should be followed
cautiously and strictly in order to maintain the security of the assets. They are described in the
[Upgrade] document.

2.1.1 Securing the presence of a debug or Bootloader functionality

In order for TO-Protect to fulfil its security requirements, you MUST comply with the following :

• The JTAG, or any debug capability must be configured in such a way that either it is not possible
to enter into such a mode, or that when entering it, the whole TO-Protect code and secure storage
content is erased.

• Any Bootloader, or hardware mechanism that may be used to download from the chip the NVM
content, or to reprogram it partially has to be deactivated.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

8 / 29

Chapter 2. Security Objectives for the Operational environment
2.1. Platform Objectives for the Operational Environment TODO001_E

2.1.2 Secure provisioning and preparative procedures (AGD_PRE.1)

Part of the life-cycle of the product is the provisioning, at which moment the personalization is performed.
This specific and critical part of the products production is entirely under Trusted-Objects responsibility,
the end-user can only provide his requirements (for instance, the Private/Public key pairs for the device, the
CA public key etc). Doing this way, we consider that part of the preparative procedures, which will avoid
any security malfunction of the product are :

• Generation of a DRBG seed using a certified hardware (eg. a HSM)

• Ensure that a secure-storage content cannot be used more than once, thus ensuring of the unicity of
each TO-Protect instance

As those two points are taken into account outside of the TOE, and therefore outside of the SESIP certi-
fication, the only case which may happen is the case where the secure storage is defective or has not been
programmed in the chips NVM. In this case, as stated in the Included guidance documents in the TOP_init()
entry-point description, the initialization of the TOE will fail, making it inoperant.

When the TOE has been provisioned, it is possible to check its identification and software version as stated
in Verification of Platform Identity.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

9 / 29

Chapter 3. Security requirements and implementation TODO001_E

3. Security requirements and implementation
3.1 Security Assurance Requirements

The claimed assurance requirements package as follows, as described in [SESIP].

Table 3.1: SESIP1 sufficiency table
Assurance Class Assurance Families
ASE: Security Target evaluation ASE_INT.1 ST Introduction

ASE_OBJ.1 Security requirements for the operational environment
ASE_REQ.3 Listed security requirements
ASE_TSS.1 TOE Summary Specification

AGD: Guidance documents AGD_OPE.1 operational user guidance
AGD_PRE.1 Preparative procedures

ALC: Life-cycle support ALC_FLR.2 Flaw reporting procedures

AVA: Vulnerability
Assessment

AVA_VAN.1 Vulnerability survey

3.1.1 Flaw Reporting Procedures (ALC_FLR.2)

In the document [ALC_FLR], the procedure used to report, evaluate and communicate about a potential
defect or vulnerability. Associated to this an Errata [Errata] exists, which lists all known defects about the
TOE.

3.1.2 Vulnerability Survey (AVA_VAN.1)

In accordance with the requirement for a vulnerability analysis survey (AVA_VAN.1) the developer has
performed a vulnerability survey and submits the following test results to demonstrate the consideration of
publicized potential vulnerabilities relating to the TOE:

Table 3.2: Vulnerability survey
Element Responsible Information source Monitoring method
C Cross-compiler GNU https://www.gnu.org/software/

gcc/
Monitor the discussion forum. Check for new releases
and change logs.

Security attacks None https://iacr.org/ Follow scientific activity around the new security
weaknesses of cryptographic algorithms, other soft-
ware implementations, hardware chips.

Security standards FIPS https://csrc.nist.gov/
publications/detail/fips/140/
3/final

Follow standard evolutions, only use secure algo-
rithms in a way they ensure security.

Security standards ANSSI https://www.ssi.gouv.fr/
administration/reglementation/
confiance-numerique/
le-referentiel-general-de-securite-rgs/

Follow good practices in order to avoid known traps.
Make good and robust usage of cryptography.

Security knowledge None https://www.keylength.com/ Ensure key lengths and algorithms will be sufficient
to allow data protection in the desired time scope.

TLS recommenda-
tions

ANSSI https://www.ssi.gouv.fr/guide/
recommandations-de-securite-relatives-a-tls/

Make sure that a secure usage of TLS is made

RFC 7457 IETF https://datatracker.ietf.org/doc/
html/rfc7457

Ensure that the known attacks over TLS/DTLS have
been taken into account correctly.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

10 / 29

https://www.gnu.org/software/gcc/
https://www.gnu.org/software/gcc/
https://iacr.org/
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-referentiel-general-de-securite-rgs/
https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-referentiel-general-de-securite-rgs/
https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-referentiel-general-de-securite-rgs/
https://www.ssi.gouv.fr/administration/reglementation/confiance-numerique/le-referentiel-general-de-securite-rgs/
https://www.keylength.com/
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-a-tls/
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-a-tls/
https://datatracker.ietf.org/doc/html/rfc7457
https://datatracker.ietf.org/doc/html/rfc7457

Chapter 3. Security requirements and implementation
3.1. Security Assurance Requirements TODO001_E

3.1.3 Survey of potential vulnerabilities

In this section, we will list the possible vulnerabilities as they appear to us, trying to build a hierarchy of
possible attacks, and finally explain why those do not apply to our TOE.

3.1.3.1 Out-of-scope vulnerabilities

Due to the software-only nature of the TOE, and the fact we do not want to impose a list of chips able to run
it, we turn this around by specifying constraints, and therefore limitations on this platform. The security
being the result of both the TOE and the selection of the chip, as well as its correct configuration, we will
consider out-of-scope all the following vulnerabilities :

• Exploit an embedding application vulnerability (for instance a buffer tampering, overflow, stack smash-
ing etc). Guidance will be given to perform code reviews, implement counter-measures, etc. We cannot
be taken responsible for something on which we have no control.

• Exploit a hardware vulnerability, which could for instance make possible the reading of the Embedded
memory using physical methods, like FIB1, EFM2, or any micro-probing technique3.

• Exploit a mis-configuration of the hardware device. For instance, if the developer forgets to deactivate
the JTAG4 bus on the product, a hacker could plug a probe and manage to get the full Non-volatile
memory content, putting the customers assets in danger. Guidance is given not to forget about this,
but we cannot proceed any further.

• Exploit a mis-configured or weak bootloader5 which would allow the non-volatile memory content to
be extracted, guidance is given not to forget about this, but we cannot proceed any further.

• Extract the TOE code or the secure-storage content from the non-volatile memory of the
micro-controller

1 Focused Ion Beam. This is a common technique used to debug/modify a silicon circuit by modifying physical structures
to bring a new functionality or create an easy probing point. At the early ages of the silicon industry, it was even used to create
complete circuits for sampling/engineering.

2 Electrostatic Force Microscope . This hardware could be used to detected charges by scanning the surface of a micro-circuit,
and therefore give a clue on the content of a non-volatile memory cell.

3 Micro-probing techniques (involving either tiny metal probes or lasers) can be used to probe signals (measure or force a
potential on a metal line). This can be used to read data live and therefore directly get a bit value even on buried signals.

4 Bus originally designed for testing purposes, which has evolved to allow also debug techniques (placing breakpoints, reset
the chip, dump/set cpu registers etc). Very convenient for the developer, it is the main backdoor that has to be closed at the
end of the production in order to seal the product. Different sealing options may exists depending on the Silicon vendor, which
open to different options being available. We cannot have any influence on those choices, we simply require to use a security
level making the extraction of non-volatile memory impossible (for instance on some chips, the JTAG may remain available,
but NVM is wiped before the access is authorized).

5 Piece of code, generally residing into ROM, which can be used to download/upload/verify the non-volatile memory content.
It is mainly used for maintenance or production purposes. In most cases, it can be locked in a way it is not usable when getting
out of the production site. Guidance will require the direct download of the firmware is not possible with the Bootloaders
setting in the field.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

11 / 29

Chapter 3. Security requirements and implementation
3.2. Security Functional Requirements TODO001_E

3.1.3.2 Considered vulnerabilities

• Extracting assets from the secure storage.

– The secure storage content is out-of-reach of an attacker (see Out-of-scope vulnerabilities), but
still we consider the case where an attacker would get access to it.

• Removing the power supply when non-volatile memory write occur to jeopardize the secure-storage
content.

– The TOE is equipped with an anti-tearing mechanism, ensuring that the secure-storage content
is always in a consistent state. It therefore disallows this kind of attacks.

• Physical attacks on the TLS protocols implementation (ECDHE-ECDSA case)

– see section During the Handshake (using ECDHE-ECDSA)

• Physical attacks on the TLS protocols implementation (PSK case)

– see section During the Handshake (using PSK)

• Physical attacks on the TLS protocols implementation (Abbreviated handshake either ECDHE-ECDSA
or PSK)

– see section Abbreviated handshake, using either ECDHE_ECDSA or PSK

• Physical attacks on the TLS protocols implementation (Payload encryption to the server)

– see section Exchange of encrypted payloads (client to the server case)

• Physical attacks on the TLS protocols implementation (Payload decryption by the client)

– see section Exchange of encrypted payloads (server to the client case)

3.2 Security Functional Requirements

3.2.1 Attestation of platform genuineness

The platform provides an attestation of the application, in a way that ensures that the application cannot be
cloned or changed without detection.

Refering to [Manual], and more precisely TOP_authenticate(). It lets the host application to challenge the
authenticity and integrity of TO-Protect. The method employed need the hosting application to generate a
random buffer and challenge the capability of TO-Protect to correctly reply the expected response. This chal-
lenge involves knowing a secret key, and being able to compute the expected integrity value (computed and
checked in TOP_init()). Not passing this test mandates the host application to stop using this TO-Protect
instance.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

12 / 29

Chapter 3. Security requirements and implementation
3.2. Security Functional Requirements TODO001_E

3.2.2 Verification of Platform Identity

The platform provides a way to identify it, including all its parts and their versions.

Refering to [Manual], and more precisely TOP_get_product_number() and TOP_get_software_version().
Using both functionalities will give you the full identification of the platform.

For making sure the correct product, corresponding to this certification is used :

• TOP_get_product_number() MUST give you back TOPR-TP-01-2.1.6.

• TOP_get_software_version() MUST give back Major= 2, Minor= 1 and Revision= 6

3.2.3 Secure Update of Platform

The platform can be updated to a newer version in the field such that the integrity, authenticity, and confi-
dentiality of the platform is maintained.

TO-Protect is not able to update itself, but the application using it can simply replace it as a whole. The
embedding platform has to perform the upgrade as described in the [Upgrade] document, which include
decrypting and checking the integrity of TO-Protect, and finally check the return value of the TOP_init()
entry-point each time it is started to be used. When starting to use TO-Protect, it is possible to get the full
identification of TO-Protect through :

• TOP_get_product_number(), TOP_get_software_version() will give back the full identification (in-
cluding software capability and version).

• TOP_get_software_integrity() will check and give back the integrity information, after making sure
that the software integrity is correct.

It is also possible to make sure it is authentic, by using TOP_authenticate().

3.2.4 Secure Initialization of Platform

The platform ensures its authenticity and integrity during platform initialization. If the platform authenticity
or integrity cannot be ensured, the platform will go to Internal Error.

During the execution of the TOP_init() entry-point, the integrity of the binary of TO-Protect is verified, as
well as the integrity of the secure storage. TOP_init() if the first entry-point to be called, no other can be
invoked before it. The integrity of the TO-Protect code includes both an integrity check, as well as a check
using a signature mechanism.

3.2.5 Attestation of Platform State

The platform provides an attestation of the state of the platform, such that it can be determined that the
platform is in a known state.

This is made by the TOP_init() entry-point, which gives back a status, interpreted as a verdict about the
correct state of TO-Protect.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

13 / 29

Chapter 3. Security requirements and implementation
3.2. Security Functional Requirements TODO001_E

3.2.6 Secure Communication Support (ECDHE_ECDSA case)

The secure communication channel authenticates the platform and any external server and protects against
disclosure, modification, replay, erasure, Man-in-the-middle of messages between the endpoints, using TLS
and DTLS 1.2, with the cipher-suite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.

TO-Protect effectively establishes a secure communication channel with an external TLS server. During the
establishment of the secured communication, a mutual authentication of both the server and the device is
performed. This authentication is done at two moments during the handshake :

It is performed during the Server Key Exchange and Client Key Exchange respective message processing.
When doing so, the server and client exchange respectively an ephemeral ECDH key, which signature is
verified, and which is also used to perform a challenge (in this case the Client Hello and Server Hello
random buffers are used).

Table 3.3: Key sizes in the ECDSA/ECDHE case
Algorithm Key length(s)
AES Encryption Keys 128 bits
HMAC Signature Keys 128 bits
ECC Ephemeral Key (for ECDHE) 256 bits, using secp256r1
ECC Key pair (for ECDSA) 256 bits, using secp256r1
HMAC Key 256 bits
Hash DRBG using SHA-256 (random number generator) 256 bits

3.2.7 Secure Communication Support (PSK case)

The secure communication channel authenticates the platform and any external server and protects against
disclosure, modification, replay, erasure, Man-in-the-middle of messages between the endpoints, using TLS
and DTLS 1.2, with the cipher-suite TLS_PSK_WITH_AES_128_CBC_SHA256.

TO-Protect effectively establishes a secure communication channel with an external TLS server. During the
establishment of the secured communication, a mutual authentication of both the server and the device is
performed. This authentication is done at two moments during the handshake :

It is performed when processing the respective client/server finished messages. In these messages, the
master_secret is used as a secret key, used to sign (using HMAC) the different messages exchanged, including
the two Client Hello and Server Hello random buffers.

Table 3.4: Key sizes in the PSK case
Algorithm Key length(s)
AES Encryption Keys 128 bits
HMAC Signature Keys 128 bits
HMAC Key 256 bits
Hash DRBG using SHA-256 (random number generator) 256 bits

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

14 / 29

Chapter 3. Security requirements and implementation
3.2. Security Functional Requirements TODO001_E

3.2.8 Physical Attacker Resistance

The platform detects or prevents attacks by an attacker with physical access before the attacker compromises
any of the other functional requirements.

Refer to Sca-def anf Fault-def for more information about this.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

15 / 29

Chapter 4. Mapping and sufficiency rationales TODO001_E

4. Mapping and sufficiency rationales
4.1 SESIP1 sufficiency

Table 4.1: SESIP1 suffiency table
Assurance Class Assurance Families Covered by Rationale
ASE: Security Target evalua-
tion

ASE_INT.1 ST Introduction Section Introduction The ST reference is in Section
1.1, the platform reference in
Section 1.2, its overview and
description is in Section 1.4

ASE_OBJ.1 Security require-
ments for the operational en-
vironment

Section Security Objectives
for the Operational environ-
ment

The requirements for the op-
erational environment are de-
scribed in Section 2

ASE_REQ.3 Listed security re-
quirements

Section Security Assurance
Requirements

The security requirements are
described in Section 3.1

ASE_TSS.1 TOE Summary
Specification

Section Security Assurance
Requirements

All SFRs are listed per defini-
tion , and for each SFR the im-
plementation and verification
is defined in the SFR.

AGD: Guidance documents AGD_OPE.1 operational user
guidance

Section Included guidance
documents

The platform evaluator will
determine whether the pro-
vided evidence is suitable to
meet the requirement.

AGD_PRE.1 Preparative pro-
cedures

Section Secure provisioning
and preparative procedures
(AGD_PRE.1)

The platform evaluator will
determine whether the pro-
vided evidence is suitable to
meet the requirement.

ALC: Life-cycle support ALC_FLR.2 Flaw reporting
procedures

Section Flaw Reporting Pro-
cedures (ALC_FLR.2)

The flaw reporting and reme-
diation procedure is described
in Section 3.1.1

AVA: Vulnerability
Assessment

AVA_VAN.1 Vulnerability sur-
vey

Section Vulnerability Survey
(AVA_VAN.1)

The vulnerability survey is de-
scribed in Section 3.1.2

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

16 / 29

Chapter 5. Potential vulnerabilities TODO001_E

5. Potential vulnerabilities
In this section, we will go through the potential vulnerabilities we can meet in the scope of a TLS 1.2
implementation. We will, for each case describe the applicability of each attack scenario and the associated
counter-measures that are used to counter the attack.

5.1 Defence against fault injection

Concerning the resistance against the Fault injection, protections have been implemented, which consist in
(but are not limited to) :

• Randomizing buffers before/after use to disallow key zeroing, and wipe any trace of important data in
memory.

• Program control flow constant surveillance

• Checking of all cryptographic computation results (avoid DFA-like attacks)

• Integrity checking of critical assets

• etc.

5.2 Defence against side-channel attacks

About the resistance against side-channel, we have developed a complete set of cryptographic software
implementations, which embed counter-measures against side-channel attacks employing computation ran-
domization and testing. These counter-measures are specific to each algorithm.

5.3 During the Handshake (using ECDHE-ECDSA)

During this handshake several operations are conduced, which can be summarized as follows (the expected
order of the operations is respected). The Client and the Server will exchange data, starting by random
numbers (the hello messages), which will be used later on to generate the master_secret. The next operation
is the mutual authentication, during which each party will try to make sure that the other is really the one
it pretends to be (the ECDHE + ECDSA part). Then the calculation of the p**re_master_secret** and
master_secret to pursue with the calculation/checking of the finished messages, these messages being the
hash of all previously exchanged messages. Finally, each party can compute the key_block, which will
be used to establish the encryption/mac keys. Once this last hurdle is passed, both parties can exchange
encrypted payloads.

In the following scenarios, we make the hypothesis that the attacker has a device in hands, which he wants
to attack in a way he can break the security and recover the keys. Obviously, his ultimate goal being to grab
the device private key, but, depending on the scenarios, some other intermediate key knowledge would also
be interesting, therefore we try to sweep over as many scenarios as we can.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

17 / 29

Chapter 5. Potential vulnerabilities
5.3. During the Handshake (using ECDHE-ECDSA) TODO001_E

Table 5.1: Potential attacks on ECDHE_ECDSA handshake
Client side Server side Attack

Type
Section Rating Rationale

Generation of random Fault Section
5.3.1

Low Section
5.2

Generation of random N/A
Generation of Ephemeral key pair N/A
Signing of the key pair N/A

Generation of a random private key Fault Section
5.3.2

High Section
5.1

Generation of Ephemeral key pair SCA Section
5.3.3

High Section
5.2

Generation of Ephemeral key pair Fault Section
5.3.4

None Section
5.1

Signing of the handshake message SCA Section
5.3.5

High

Verification of the servers certificate Fault Section
5.3.6

High Section
5.1

Verification of the clients certificate N/A
Computation of the ECDHE pre_master_secret SCA Section

5.3.7
High N/A

Computation of the ECDHE Fault Section
5.3.8

None N/A

Computation of the master_secret SCA Section
5.3.9

High N/A

Computation of the clients finished SCA Section
5.3.10

High N/A

Computation of the servers finished N/A
Checking of the servers finished Fault Section

5.3.11
None N/A

Checking of the clients finished N/A
Computation of the secret keys SCA Section

5.3.12
High Section

5.2
Computation of the secret keys Fault Section

5.3.13
None N/A

5.3.1 Fault attack on the clients random generation

This attack would target at forcing the client to generate a random value with a lesser entropy than expected.
The impact of this attack is not so critical, as this random value is always used in conjunction with the servers
random, minimizing the impact of this altered entropy regarding the key quality.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

18 / 29

Chapter 5. Potential vulnerabilities
5.3. During the Handshake (using ECDHE-ECDSA) TODO001_E

5.3.2 Fault attack on the ephemeral random private key generation

This attack aims at corrupting the private ephemeral key generation, on the client side.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

5.3.3 Side-channel attack on the ephemeral public key generation

This attack aims at recovering the private ephemeral key, on the client side.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.4 Fault attack on the ephemeral public key generation

This attack aims at corrupting the public ephemeral key generation, on the client side. As far as we
understand, this attack is non-sense, as both parties wont be able to agree on the same pre_master_secret,
and therefore wont be in a position to communicate later on (in this case, the socket will be closed by at
least one side).

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.5 Side-channel attack on the signing of all previous messages

This attack aims at recovering the static private key of the client.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.6 Fault attack on the servers certificate verification

This attack aims at forcing a client to either refuse a legitimate certificate (although this can be done by
different ways, starting with corrupting the communication), or accept a non-valid servers certificate, being
the base of a more sophisticated attack where either the server or the connection has been compromised
(the Client thinks he talks to the right server, while it is not the case). Only this second scenario will be
considered seriously.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

19 / 29

Chapter 5. Potential vulnerabilities
5.3. During the Handshake (using ECDHE-ECDSA) TODO001_E

5.3.7 Side-channel attack on the ECDHE (pre_master_secret calculation)

This attack would target at recovering the clients private key by performing a side-channel attack on the
scalar multiplication. Effectively, the client will take the servers public key (from the certificate), and multiply
it with its own private key. Succeeding leads to the discovery of the clients private key and the recovery of
all exchanges between the client and the server.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.8 Fault attack on the ECDHE (pre_master_secret calculation)

This attack would result in corrupting the pre_master_secret on the client side only. It has no interest,
as the communication between the two parties will not be possible (they will not share the same pre_mas-
ter_secret), and both the client and the server will close the connection after the first payload is received.

Impact on our product:

• This attack is rated as not feasible

5.3.9 Side-channel attack on the master_secret calculation

This attack would target at recovering the master_secret key by performing a side-channel attack on the
PRF function. This attack involves to have a compromised server, which would always send the same
ephemeral key, in order to keep the pre_master_secret identical from a computation to the other.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.10 Side-channel attack on the finished calculation and checking

For this scenario, we make the hypothesis that the client is requesting, under some specific circumstances
an abbreviated handshake to the server. It is supposed that the hacker has an easy way of forcing the client
to enter this negotiation. Under this hypothesis, this scenario is possible. The goal for the hacker being to
gather as many power curves he needs to be able to implement its side-channel attack on master_secret,
when involved in the finished calculations.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

20 / 29

Chapter 5. Potential vulnerabilities
5.4. During the Handshake (using PSK) TODO001_E

5.3.11 Fault attack on the finished

This attack aims at corrupting either the finished message calculation (the one sent to the server), or the
decision regarding the finished message received from the server (in the case of a compromised server).

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

5.3.12 Side-channel attack on the computation of the key_block

For this scenario, we make the hypothesis that the client is requesting, under some specific circumstances
an abbreviated handshake to the server. It is supposed that the hacker has an easy way of forcing the client
to enter this negotiation. Under this hypothesis, this scenario is possible. The goal for the hacker being to
gather as many power curves he needs to be able to implement its side-channel attack on master_secret,
when involved in the computation of the key_block.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.3.13 Fault attack on the computation of the key_block

For this scenario, we make the hypothesis of a fault being injected during the key_block computation.
Effectively, this scenario is very unlikely to happen, as, as soon as the keys are used, if either the server or
the client detects an error during the MAC computation, the socket will be closed.

This attack scenario is rated as None.

5.4 During the Handshake (using PSK)

Differently from what is made with ECDHE_ECDSA, the PSK handshake does not require any private
or public keys to be made, simply each party has in hands a pre_shared_secret which will be used as a
pre_master_secret. The dialog starts the same way, with the exchange of the hello messages, which random
value will be used the same way than before to compute the master_secret. The remaining messages are
identically computed to end-up with each party having the encryption/mac keys in hand, ready to exchange
encrypted payloads.

Effectively, we do not see any things being really different from the ECDHE_ECDSA scenario, at least on
an attacker standpoint, therefore we re-use all of the formelly explained attacks.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

21 / 29

Chapter 5. Potential vulnerabilities
5.5. Abbreviated handshake, using either ECDHE_ECDSA or

PSK TODO001_E

Table 5.2: Potential attacks on ECDHE_ECDSA handshake
Client side Server side Attack Section Rating Impact
Generation of random Fault Section

5.3.1
Low Section

5.1
Generation of random N/A

Using the PSK => pre_master_secret N/A
Computation of the master_secret SCA Section

5.3.9
High Section

5.2
Computation of the clients finished SCA Section

5.3.10
High Section

5.2
Computation of the servers finished N/A

Checking of the servers finished Fault Section
5.3.11

None N/A

Checking of the clients finished N/A
Computation of the secret keys SCA Section

5.3.12
High Section

5.2
Computation of the secret keys Fault Section

5.3.13
None N/A

5.5 Abbreviated handshake, using either ECDHE_ECDSA or
PSK

The abbreviated handshake is a protocol capability that enables the establishment of new secret keys, while
re-using the already established master_secret and newly generated random values. Based on the former
master_secret, and using the newly exchanged hello messages, we can compute fresh encryption/mac keys.

Once again, the scenarios are not so different than before, and we simply re-se them.

Table 5.3: Potential attacks on abbreviated handshake
Client side Server side Attack Section Rating Impact
Generation of random Fault Section

5.3.1
Low Section

5.1
Generation of random N/A

Computation of the clients finished SCA Section
5.3.10

High Section
5.2

Computation of the servers finished N/A
Checking of the servers finished Fault Section

5.3.11
None N/A

Checking of the clients finished N/A
Computation of the secret keys SCA Section

5.3.12
High Section

5.2
Computation of the secret keys Fault Section

5.3.13
None N/A

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

22 / 29

Chapter 5. Potential vulnerabilities
5.6. Exchange of encrypted payloads (client to the server case) TODO001_E

5.6 Exchange of encrypted payloads (client to the server case)

In this scenario, and the following one (server to client), we do not consider a compromised server:

• Due to the protocol robustness, it seems unrealistic or even useless, as a compromised server able to
fake, without being detected, would necessarily need all keys to be broken. What would be the need
to try to attack the data exchange in this case ?

• A partially compromised server has not been envisioned either. Indeed it could consist in a server
having its credentials safe, but for which the protocol implementation has been biaised. For instance,
it could forget to close the connection in case a MAC is detected to be wrong, thus allowing to run
fault injection on the client side during the MAC computation. This type of scenario was bringing
us too far in the analysis and was rejected although it could be more realistically setup under some
circumstances.

• Any attempt to fake something, which results in a de-synchronisation between parties (in TLS) will
result in the connection being closed. DTLS is more flexible, but the fact he disallows the second
message with the same sequence to be taken into account closes a lot of possibilities and opens very
few.

When the keys have been generated, some data exchange can start. For this part, we only support
AES_CBC_128. Some protocol aspects have to be taken into account:

• The IV is sent first on the message (in plain)

• The MAC is computed on the plain text (including the IV) and not on the padding

• A padding is added to the plaintext message to fit with the block ciphers size

• The encryption covers the message, MAC and padding (the IV remains in plain)

• The padding consistency is checked a part, as it is not part of the MAC.

Just for memory, the structure of an exchanged message is the following:

Table 5.4: Payload encrypted/maced parts
Data Item Header IV Data blocks (plenty) MAC Padding
Encrypted/Plain Plain Plain Encrypted Encrypted Encrypted
MACed ? MACed MACed MACed Not MACed Not MACed

Table 5.5: Potential attacks on message encryption
Client side Server side Attack Section Rating Impact
Generation of random IV Fault Section

5.6.1
High Section

5.1
Computation of the MAC SCA Section

5.6.2
Low Section

5.2
Computation of the MAC DFA Section

5.6.3
Low Section

5.1
Computation of the Encryption SCA Section

5.6.4
High Section

5.2
Computation of the Encryption DFA Section

5.6.5
Low Section

5.1
Computation of the Encryption Fault Section

5.6.6
High Section

5.1
Decryption of the message N/A
Checking of the MAC N/A

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

23 / 29

Chapter 5. Potential vulnerabilities
5.6. Exchange of encrypted payloads (client to the server case) TODO001_E

5.6.1 Fault attack on the generation of the random IV

For this scenario, we try to influence the quality of the random IV value thats included into the message.
Effectively the attackers goal is to manage to have several messages sent-over with the same IV, in order to
identify identical messages. TLS should disallow any source of leakage on the transported payload, and the
specification is clear (section 6.2.3.2 of [TLS12]) that this data must remain UNPREDICTABLE.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

5.6.2 Side-channel attack on the MAC computation

For this scenario, the attacker will try to attack the MAC computation using side-channel techniques.
Unfortunately, it has no access to any data that can be MACed, and the resulting MAC either. Therefore
this attack is not feasible unless the encryption key is broken first.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.6.3 Fault attack on the MAC computation

For this scenario, the attacker will try to attack the MAC computation using a fault injection, using various
techniques. This will only be feasible once the encryption key has been obtained.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

5.6.4 Side-channel attack on the CBC encryption

For this scenario, the attacker will try to attack the CBC encryption using side-channel techniques. This
attack is the first step to be made before being able to break the MAC key.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.6.5 Fault attacks on the CBC encryption (key recovery)

In this scenario, the attacker will try to attack the CBC encryption using a fault injection. The attack
could seem undetectable, because the MAC is computed on the plaintext, not the ciphertext. By the way, a
verification of the padding part is mandatory and, thanks to the chaining, will be most probably be altered
when doing the fault injection. Another blocking aspect of the protocol is the fact that it will be impossible
to get twice the same plaintext ciphered, as the IV is generated randomly each time. Unless the clients
implementation is biaised, this attack will therefore not be possible to be setup.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

24 / 29

Chapter 5. Potential vulnerabilities
5.7. Exchange of encrypted payloads (server to the client case) TODO001_E

5.6.6 Fault attacks on the CBC encryption (data recovery)

In this scenario, the attacker will try to attack the CBC encryption using a fault injection in order to try to
avoid it and therefore get the plaintext back, with or without the IV being xored with it. The attack could
be undetectable because the MAC is computed on the plaintext, and not the ciphertext.

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

5.7 Exchange of encrypted payloads (server to the client case)

Table 5.6: Potential attacks on message decryption
Client side Server side Attack Section Rating Impact

Generation of random IV
Computation of the MAC
Computation of the Encryption

Decryption of the message SCA Section
5.7.1

High Section
5.2

Decryption of the message Fault Section
5.7.2

Low Section
5.1

Checking of the MAC SCA Section
5.6.2

Low Section
5.2

Checking of the MAC Fault Section
5.7.2

Low Section
5.2

5.7.1 Side-channel attack on the CBC decryption

For this scenario, the attacker will try to attack the CBC computation using side-channel techniques.

Impact on our product:

• TO-Protect uses a side-channel resistant crypto library, and is therefore immune to this attack.

5.7.2 Fault injection attack on the MAC verification

For this scenario, the attacker will try to fault the MAC verification in order to try to have the client accept
forged messages while the hacker does not knows the MAC key. It can be used to replay messages (in TLS
with one fault during the MAC verification, in DTLS with two faults one to let him accept a message whose
sequence is wrong and one to have him accept the message while the MAC is wrong).

Impact on our product:

• TO-Protect embeds protections against fault injection, and is therefore immune to this attack.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

25 / 29

Chapter 6. Security Impact Analysis TODO001_E

6. Security Impact Analysis
TO-Protect exists under 2 references, each of it targetting at a specific familly of ARM products :

• TOPR-TP-00-2.1.6 - Targets at any core in the ARM-v6m, ARM-v7m or ARM-v8m architectures
(Namelly Cortex-M0+, M3, M4, M7, M23, M33, M35P and M55)

• TOPR-TP-01-2.1.6 - Targets at some cores in the ARM-v7m and ARM-v8m architectures (Namelly
Cortex-M3, M4, M7, M33, M35P and M55)

The differences between the two implementations are essentially on the code size and some specific optimi-
sations introduced to benefit from a performance boost when doing heavy cryptographic operations. The
security level remains the same and the counter-measures have been validated in both cases with the same
level of security and testing. As a consequence, we consider that the security impact of such changes are not
introducing any security issue.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

26 / 29

Chapter 7. Configuration Management TODO001_E

7. Configuration Management
Refer to the bibliography for a complete and exhaustive list of documents referenced in this security target.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

27 / 29

Chapter 8. Document History TODO001_E

8. Document History
Table 8.1: History

Author Version Date Comment
Vincent Dupaquis TODO001-A 21 dec 2021 First release
Vincent Dupaquis TODO001-B 23 may 2022 Second release after lab comments
Vincent Dupaquis TODO001-C 5 sep 2022 Changed the date format.

Updated the list of referenced documents
Added a specific section for the debug and bootloader in §2
Added links to specific sections/documents in §2.1
Added the product and revisions numbers for identification in
§3.2.2

Vincent Dupaquis TODO001-D 30 sep 2022 Changed the authentication.
Vincent Dupaquis TODO001-E 14 oct 2022 Added the attacks document reference.
Vincent Dupaquis TODO001-E 15 nov 2022 Minor typos fixed.

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

28 / 29

Bibliography TODO001_E

Bibliography
[SESIP] Security Evaluation for IoT Platforms. See https://www.trustcb.com/iot/sesip/

[TLS12] Transport Layer Security Protocol, Version 1.2. See https://datatracker.ietf.org/doc/html/
rfc5246

[DTLS12] Datagram Transport Layer Security Protocol, Version 1.2. See https://datatracker.ietf.org/doc/
html/rfc6347

[PSK-TLS] Pre-Shared Key Ciphersuites for Transport Layer Security (TLS). See https://tools.ietf.org/
html/rfc4279

[PSK-TLS-SHA256] Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter
Mode. See https://tools.ietf.org/html/rfc5487

[TLS-ECC] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions
1.2 and Earlier. See https://tools.ietf.org/html/rfc8422

[TLS-ECC-SUITES] TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode
(GCM). See https://tools.ietf.org/html/rfc5289

[AES] ADVANCED ENCRYPTION STANDARD (AES). See https://csrc.nist.gov/csrc/media/
publications/fips/197/final/documents/fips-197.pdf

[Hash-DRBG] Recommendation for Random Number Generation Using Deterministic Random Bit Gener-
ators. See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[HMAC] HMAC: Keyed-Hashing for Message Authentication. See https://tools.ietf.org/pdf/rfc2104.pdf

[Extensions] Transport Layer Security (TLS) Extensions (list). See http://www.iana.org/assignments/
tls-extensiontype-values/tls-extensiontype-values.xhtml

[TLS-Extensions] Transport Layer Security (TLS) Extensions. See https://datatracker.ietf.org/doc/html/
rfc4366

[Manual] TODO002_E - TO-Protect 2.x User Manual. This document presents in detail the TO-Protect
API.

[Upgrade] TODO005_B - Secure upgrade manual. This document explains how to upgrade TO-Protect
when already deployed in the field.

[Admin] TODO003_A - Administration manual. This document presents the administration commands
API, and the way to send secure administration commands to TO-Protect.

[ALC_FLR] TODO004_B - The Flaw reporting procedure. This document explains how to declare an issue,
and how it is processed to end-up finding a solution.

[Errata] TODO006_B - TO-Protect 2.x Errata Sheet. This document lists all known issues in TO-Protect
2.x series.

[Attacks] TODO007_C - TO-Protect 2.x Attacks on TLS. This documents all the attacks taken into
account.

[TLS-ANSSI] Recommandations de sécurité relatives à TLS. See https://www.ssi.gouv.fr/guide/
recommandations-de-securite-relatives-a-tls

[TLS-weaknesses] Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS
(DTLS). See https://datatracker.ietf.org/doc/html/rfc7457

Public Information
This document and the information it contains is the property of Trusted Objects.

It can’t be used or reproduced without prior written approval.

29 / 29

https://www.trustcb.com/iot/sesip/
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc5487
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc5289
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://tools.ietf.org/pdf/rfc2104.pdf
http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-a-tls
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-a-tls
https://datatracker.ietf.org/doc/html/rfc7457

	1 Introduction
	1.1 ST reference
	1.2 Platform reference
	1.3 Included guidance documents
	1.3.1 Followed security guidances
	1.3.2 Roles

	1.4 Platform functional overview and description
	1.4.1 The TOE boundary
	1.4.2 TLS dialog example
	1.4.3 The TOE Structure
	1.4.3.1 TO-Protect
	1.4.3.2 The secure storage
	1.4.3.3 The perso API
	1.4.3.4 The secure Upgrade
	1.4.3.5 LibTO and the helpers
	1.4.3.6 The application
	1.4.3.7 The hardware platform

	2 Security Objectives for the Operational environment
	2.1 Platform Objectives for the Operational Environment
	2.1.1 Securing the presence of a debug or Bootloader functionality
	2.1.2 Secure provisioning and preparative procedures (AGD_PRE.1)

	3 Security requirements and implementation
	3.1 Security Assurance Requirements
	3.1.1 Flaw Reporting Procedures (ALC_FLR.2)
	3.1.2 Vulnerability Survey (AVA_VAN.1)
	3.1.3 Survey of potential vulnerabilities
	3.1.3.1 Out-of-scope vulnerabilities
	3.1.3.2 Considered vulnerabilities

	3.2 Security Functional Requirements
	3.2.1 Attestation of platform genuineness
	3.2.2 Verification of Platform Identity
	3.2.3 Secure Update of Platform
	3.2.4 Secure Initialization of Platform
	3.2.5 Attestation of Platform State
	3.2.6 Secure Communication Support (ECDHE_ECDSA case)
	3.2.7 Secure Communication Support (PSK case)
	3.2.8 Physical Attacker Resistance

	4 Mapping and sufficiency rationales
	4.1 SESIP1 sufficiency

	5 Potential vulnerabilities
	5.1 Defence against fault injection
	5.2 Defence against side-channel attacks
	5.3 During the Handshake (using ECDHE-ECDSA)
	5.3.1 Fault attack on the client’s random generation
	5.3.2 Fault attack on the ephemeral random private key generation
	5.3.3 Side-channel attack on the ephemeral public key generation
	5.3.4 Fault attack on the ephemeral public key generation
	5.3.5 Side-channel attack on the signing of all previous messages
	5.3.6 Fault attack on the server’s certificate verification
	5.3.7 Side-channel attack on the ECDHE (pre_master_secret calculation)
	5.3.8 Fault attack on the ECDHE (pre_master_secret calculation)
	5.3.9 Side-channel attack on the master_secret calculation
	5.3.10 Side-channel attack on the finished calculation and checking
	5.3.11 Fault attack on the finished
	5.3.12 Side-channel attack on the computation of the key_block
	5.3.13 Fault attack on the computation of the key_block

	5.4 During the Handshake (using PSK)
	5.5 Abbreviated handshake, using either ECDHE_ECDSA or PSK
	5.6 Exchange of encrypted payloads (client to the server case)
	5.6.1 Fault attack on the generation of the random IV
	5.6.2 Side-channel attack on the MAC computation
	5.6.3 Fault attack on the MAC computation
	5.6.4 Side-channel attack on the CBC encryption
	5.6.5 Fault attacks on the CBC encryption (key recovery)
	5.6.6 Fault attacks on the CBC encryption (data recovery)

	5.7 Exchange of encrypted payloads (server to the client case)
	5.7.1 Side-channel attack on the CBC decryption
	5.7.2 Fault injection attack on the MAC verification

	6 Security Impact Analysis
	7 Configuration Management
	8 Document History
	Bibliography

