

SESIP Security Target for

FreeRTOS

Amazon

Version: 1.9 Dated 2021/01/14
Based on [SESIP] methodology, version “Public Release v1.0”

CHANGES CONTROL

Version Date Author Reason Changes

1.0 2020/10/14 Amazon
& jtsec

First Version N/A

1.1 2020/10/19 Amazon
& jtsec

Updated with
more detail

Full document affected

1.2 2020/10/26 Amazon
& jtsec

Ready for
evaluation

Full document affected

1.3 2020/10/27 Amazon
& jtsec

Alignment with
[GUIDES]

Minor changes.
ALC_FLR reworked.

1.4 2020/11/12 Amazon
& jtsec

Modify logo and
solve lab
comments

Minor changes.

1.5 2020/11/24 Amazon
& jtsec

Clarification of
rollback
capabilities.

Minor changes.

1.6 2020/12/21 Amazon
& jtsec

Addressing
Riscure
comments

Version numbers updated
Added reference to wolfssl
API
Removed Secure Sockets
Library from the TOE scope
Clarified wolfSSL FIPS mode
and cryptographic hardware
support
Added LTS Code Quality
checklist
Other minor updates

1.7 2020/12/29 Amazon
& jtsec

Addressing
Riscure
comments

Typographical error and
other minor clarifications

1.8 2021/01/05 Amazon Addressing
review comments

Update library version
numbers.
Minor edits for clarity

1.9 2021/01/14 Amazon Update Add OE.RNG requirements

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 3/20

Table of Contents

1 Introduction .. 4

1.1 ST reference .. 4

1.2 Platform reference .. 4

1.3 Included guidance documents .. 4

1.4 Platform functional overview and description.. 5

1.4.1 Overview ... 5

1.4.2 TOE Scope ... 6

2 Security Objectives for the operational environment .. 9

2.1 Platform Objectives for the Operational Environment ... 9

3 Security requirements and implementation .. 10

3.1 Security Assurance Requirements... 10

3.1.1 Flaw Reporting Procedure (ALC_FLR.2) .. 10

3.2 Security Functional Requirements .. 11

3.2.1 Verification of Platform Identity ... 11

3.2.2 Verification of Platform Instance Identity .. 11

3.2.3 Secure Update of Platform ... 12

3.2.4 Secure Update of Application ... 12

3.2.5 Secure Communication Support ... 12

3.2.6 Software Attacker Resistance: Isolation of Platform .. 13

3.2.7 Software Attacker Resistance: Isolation of Platform Parts... 13

3.2.8 Software Attacker Resistance: Isolation of Application Parts .. 14

3.2.9 Cryptographic Operation .. 14

4 SESIP2 Mapping and sufficiency rationales .. 16

5 References .. 18

6 Acronyms .. 19

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 4/20

1 INTRODUCTION

The Security Target describes the Platform (in this chapter) and the exact security properties of the

Platform that are evaluated against [SESIP] (in chapter “Security requirements and implementation”)

that a potential consumer can rely upon the product upholding if they fulfill the objectives for the

environment (in chapter “Security Objectives for the operational environment”).

1.1 ST REFERENCE

See title page.

1.2 PLATFORM REFERENCE

TOE name FreeRTOS

TOE version 202012.00-LTS

TOE identification FreeRTOS version 202012.00-LTS

TOE Type IoT operating system and libraries for microcontrollers.
The TOE is delivered in source code form.

The TOE is composed of different parts that are identified in the following table:

TOE Parts

FreeRTOS Kernel V10.4.3

FreeRTOS+TCP V2.3.2

corePKCS #11 V3.0.0

OTA Updates V2.0.0

Mbed TLS V2.24.0

wolfSSL V4.5.0

1.3 INCLUDED GUIDANCE DOCUMENTS

The following documents are included with the platform:

Kernel base documentation

[README_FIRST] README FIRST.txt 202012.00-LTS

[KERNEL-API] FreeRTOS Kernel API Reference 10.4.3

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 5/20

Libraries documentation

[TCP-API] FreeRTOS+TCP API Rerefence 2.3.2

[corePKCS#11-API] corePKCS#11 Cryptoki Library API Reference 3.0.0

[OTA-API] Over the Air (OTA) Update library API Reference 2.0.0

[Mbed TLS-API] Mbed Transport Layer Security Library API Reference 2.24.0

[WOLFSSL-GUIDE] wolfSSL User Manual
Note that this version is also applicable to wolfSSL 4.5.0

4.1.0

Other documentation

[WOLFSSL-MIGRATION] FreeRTOS with mbedTLS to FreeRTOS with wolfSSL
Migration Guide

1.0

[QUALIFICATION] FreeRTOS Qualification Guide 2020

Adhoc SESIP guidance

[GUIDES] SESIP additional guidance for FreeRTOS 1.5

1.4 PLATFORM FUNCTIONAL OVERVIEW AND DESCRIPTION

1.4.1 OVERVIEW

FreeRTOS is an open source, real-time operating system for microcontrollers that makes small, low-

power edge devices easy to program, deploy, secure, connect, and manage. Distributed freely under the

MIT open source license, FreeRTOS includes a kernel and a growing set of software libraries suitable for

use across industry sectors and applications. This includes securely connecting small, low-power devices

to AWS cloud services through a secure connection. FreeRTOS is built with an emphasis on reliability and

ease of use.

A microcontroller contains a simple, resource-constrained processor that can be found in many devices,

including appliances, sensors, fitness trackers, industrial automation, and automobiles. Many of these

small devices can benefit from connecting to the cloud or locally to other devices, but have limited

compute power and memory capacity and typically perform simple, functional tasks. Microcontrollers

frequently run operating systems that may not have built-in functionality to connect to local networks

or the cloud, making IoT applications a challenge. FreeRTOS helps solve this problem by providing the

kernel to run low-power devices as well as software libraries that make it easier to securely connect to

the cloud or other edge devices, so FreeRTOS can collect data from them for IoT applications and take

action.

The TOE is provided to users in source code form and will be typically compiled to a specific hardware

and flashed to devices as a single binary image, including the applications running on top of the TOE.

The main security features of the TOE are as follows:

• Verification of Platform Identity and Instance Identity: The TOE version is defined in the

sources files and the preparative guidance [GUIDES] strictly forbids unauthorized modification

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 6/20

of these numbers. Through the provisioning process in factory, it is possible to univocally

identify the TOE instance identity.

• Firmware update: Over the Air (OTA) Updates OTA updates make it possible to update device

firmware without an expensive recall or technician visit. This method allows to quickly respond

to security vulnerabilities and software bugs that are discovered after the devices are deployed

in field. Updates will be verified to be from a trusted source, along with other validations like

version checking and compatibility. The FreeRTOS over-the-air (OTA) client library enables the

app developer to manage the notification of a newly available update, download the update,

and perform cryptographic verification of the firmware update.

As specified by [GUIDES], code signature verification must be enabled using the

“configOTA_ENABLE_CODE_SIGNATURE_VERIFICATION” macro that is located in the

“aws_ota_agent_config.h” header file.

• Secure Communications support: The developer can use the TLS library to create embedded

applications that communicate securely. The library is designed to make onboarding easy for

software developers from various network programming backgrounds.

• Isolation capabilities: The TOE contains security features such as Task Isolation and Separation,

which allows developers to securely isolate security critical code within the same linear

memory space, using the processor’s MPU/MMU. This feature enables microcontroller

applications to be more robust and more secure by first enabling tasks to run in either

privileged or unprivileged mode, and second restricting access to resources such as RAM,

executable code, peripherals, and memory beyond the limit of a task’s stack. Huge benefit is

gained from, for example, allowing defining memory regions and assigning memory access

permission and memory attributes to each of them as doing so will protect against many attack

vectors such as buffer overflow exploits or the execution of malicious code loaded into RAM.

This feature requires hardware MPU support.

• Cryptographic Operations: The TOE provides cryptographic operations capabilities through a

common PKCS#11 interface. Two different cryptographic implementations can be configured,

mbed and WolfSSL (FIPS 140-2 certified as can be seen in

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389, to

use the FIPS mode please follow the instructions provided in

https://www.wolfssl.com/docs/fips-ready-user-guide/ ; version number can be obtained

through wolfCrypt_GetVersion_fips()).

1.4.2 TOE SCOPE

The TOE consists of the FreeRTOS kernel as well as software libraries implementing FreeRTOS+TCP,

corePKCS #11, over-the-air updates (OTA), TLS and cryptographic operations.

The TOE is intended to be used as an operating system as well as connectivity library component by IoT

device manufactures in implementing firmware for microcontroller-based connected devices.

The TOE scope is depicted in Figure 1 TOE scope. The grayed parts are within the evaluation scope and

the other parts are outside of the evaluated scope.

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389
https://www.wolfssl.com/docs/fips-ready-user-guide/

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 7/20

Figure 1 TOE scope

The physical scope includes only the applicable source code for the evaluated version FreeRTOS kernel

and in scope libraries, and associated guidance documentation as listed in section 1.3. No hardware is

included in the physical scope.

The out of scope part (Non-TOE) comprises:

• Hardware: MCU, peripherals and supporting MPU. Optionally, a secure element could be

included implementing cryptographic algorithm engines or tamper-resistant storage. Please,

note that to remain compliant to this ST, you shall use the evaluated cryptographic algorithms.

• Vendor drivers: In general, device drivers are independent of the underlying operating system

and are specific to a given hardware configuration. A hardware abstraction layer (HAL) is a

wrapper that provides common interfaces between drivers and higher-level application code.

The HAL abstracts away the details of how a specific driver works and provides a uniform API to

control similar devices. In this way, the app developer can use the same APIs to control various

devices across multiple microcontroller (MCU) based reference boards.

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 8/20

• Bootloader: the bootloader implementation. It is recommended that the implementation of

the bootloader enforces anti-rollback and firmware code-sign verification.

• Other libraries: Any companion library not explicitly included under the logical scope.

• Embedded applications: FreeRTOS is typically flashed to devices as a single compiled image

with all of the components required for device applications. Independent of the individual

microcontroller being used, embedded application developers can expect the same

standardized interfaces to the FreeRTOS kernel and all FreeRTOS software libraries.

The logical scope includes:

• FreeRTOS Kernel and FreeRTOS Internal Libraries: The FreeRTOS kernel is a real-time

operating system that supports numerous architectures. It is ideal for building embedded

microcontroller applications. It provides:

o A multitasking scheduler.

o Multiple memory allocation options (including the ability to create completely

statically-allocated systems).

o Intertask coordination primitives, including task notifications, message queues,

multiple types of semaphore, and stream and message buffers.

• FreeRTOS+TCP: FreeRTOS+TCP is a scalable, open source and thread safe TCP/IP stack for

FreeRTOS. FreeRTOS+TCP provides a familiar and standards based Berkeley sockets

interface, making it as simple to use and as quick to learn as possible. An alternative

callback interface is also available for advanced users.

• corePKCS #11 Module: PKCS #11 is a standardised and widely used API for manipulating

common cryptographic objects. It is important because the functions it specifies allow

application software to use, create, modify, and delete cryptographic objects, without ever

exposing those objects to the application’s memory. The TOE supports two different

underlying implementations: mbed TLS and wolfSSL.

• OTA: The Over-The-Air (OTA) Agent enables the app developer to manage the notification,

download, and verification of firmware updates for FreeRTOS devices using HTTP or MQTT

as the protocol. The OTA Agent can share a network connection with the application. By

sharing a network connection, the app developer can potentially save a significant amount

of RAM. In addition, the OTA Agent library lets the app developer define application-

specific logic for testing, committing, or rolling back a firmware update.

• TLS: The FreeRTOS Transport Layer Security (TLS) interface is a thin, optional wrapper used

to abstract cryptographic implementation details away from the Secure Sockets Layer (SSL)

interface above it in the protocol stack. The purpose of the TLS interface is to invoke the

software crypto library.

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 9/20

2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

2.1 PLATFORM OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

For the platform to fulfill its security requirements, the operational environment (technical or

procedural) shall fulfill the following objectives as described in [GUIDES] section “Environmental

Requirements”:

• OE.PHYSICAL: The platform shall only be deployed in environments where physical attacks
protections are not required.

• OE.HOSTILE_CODE: The application shall not allow execution of hostile code.

• OE.MPU: The hardware where the platform is deployed shall support MPU.

• OE.PERSONNEL: Only authorized and trustworthy personnel shall have access to the TOE
development environment

• OE.INTEGRITY: No modification to the TOE by the application developer is allowed.

• OE.UPDATES: The application developer shall make the update mechanism available via AWS
IoT OTA service and shall implement functionality to regularly check for updates. Application
developers are required to only use newer versions of the TOE and do not go back to a
potential vulnerable version.

• OE.RNG: The hardware where the platform is deployed shall provide a cryptographically secure
random number generator as describe in the FreeRTOS Qualification Guide [QUALIFICATION].

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 10/20

3 SECURITY REQUIREMENTS AND IMPLEMENTATION

3.1 SECURITY ASSURANCE REQUIREMENTS

The claimed assurance requirements package is SESIP2 as defined in [SESIP]. The assurance

requirements are as follows:

Assurance Class Assurance Families

ASE: Security Target
evaluation

ASE_INT.1 – ST Introduction
ASE_OBJ.1 – Security requirements for the operational environment
ASE_REQ.3 – Listed security requirements
ASE_TSS.1 – TOE summary specification

ADV: Development ADV_FSP.4 – Complete functional specification

AGD: Guidance documents AGD_OPE.1 – Operational user guidance
AGD_PRE.1 – Preparative procedures

ALC: Life-cycle support ALC_FLR.2 – Flaw reporting procedures

ATE: Tests ATE_IND.1 Independent testing: conformance

AVA: Vulnerability
Assessment

AVA_VAN.2 – Vulnerability analysis

3.1.1 FLAW REPORTING PROCEDURE (ALC_FLR.2)

The evaluated version meets the LTS Code Quality checklist, that includes static checking of the code

with Coverity, and extensive unit testing amongst others:

Category Checks

1 Complexity Score All functions will have a GNU Complexity score of 8 or lower

2 Coding Standard All functions will comply with the MISRA coding standard

3 Static Checking All code will be statically checked with Coverity

4 Function Returns All functions will have a single exit point

5 Code Testing All code will have extensive unit tests. Gcov reports will be used to report

the test coverage, and each library will have extended functional tests.

6 Requirements

Documentation

All libraries will have documented requirements, which may include

resource requirements, listing all dependencies, and porting

requirements (as applicable)

7 Design

Documentation

All libraries will have a design document, which may include application

and cloud interface, state machines, and synchronization (as applicable).

8 Compiler Warning Code will compile without generating any compiler warnings when the

gcc -Wall -Wextra compiler options are used.

https://www.gnu.org/software/complexity/manual/complexity.html
https://freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html#CodingStandard
https://scan.coverity.com/

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 11/20

If however a user of the Platform finds a flaw, we ask that the user notifies AWS/Amazon Security via

our vulnerability reporting page (https://aws.amazon.com/security/vulnerability-reporting/) or directly

via email to aws-security@amazon.com.

Please do not create a public github issue.

When an email is received a ticket in the FreeRTOS internal system is automatically generated and a

security expert is assigned to review this as critical priority tasks. Security tickets can only be viewed by

people referenced from the ticket. Once the ticket is assessed and a vulnerability is confirmed the

development team creates a disclosure and remediation plan, publish a public message disclosing the

vulnerability and its remediation.

After verifying that the flaw is real, a fix is developed and merged into the current release candidate

version of the TOE, where it forms part of the next release of the kernel or libraries that compose the

TOE, and the internal issue is closed.

If needed, a new CVE number is requested to the competent authorities. Security updates with CVE’s

are listed here https://aws.amazon.com/freertos/security-updates/

The new version of the code will finally undergo the Code Quality checklist to guarantee the good form

of the output.

For severe issues an updated version of the current release is made available as soon as the fix is

available.

Users can stay aware of FreeRTOS updates and vulnerability subscribing to the mailing list in this

address: https://www.freertos.org/RTOS-contact-and-support.html

When new releases of the TOE are made, customers can update their factory production lines and TOE

devices that have already been provisioned with a previous version using the “Secure Update of

Platform” Security Functionality.

3.2 SECURITY FUNCTIONAL REQUIREMENTS

The platform fulfills the following security functional requirements. All of them are tested for robustness

as part of a SESIP Level 2 evaluation.

3.2.1 VERIFICATION OF PLATFORM IDENTITY

The platform provides a unique identification of the platform, including all its parts and their versions.

Conformance rationale:

The source code contains the version of the TOE and its libraries in the manifest file.

3.2.2 VERIFICATION OF PLATFORM INSTANCE IDENTITY

The platform provides a unique identification of that specific instantiation of the platform, including

all its parts and their versions.

https://aws.amazon.com/security/vulnerability-reporting/
mailto:aws-security@amazon.com
https://aws.amazon.com/freertos/security-updates/
https://www.freertos.org/RTOS-contact-and-support.html

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 12/20

Conformance rationale:

During the TOE provisioning, the ThingName of the device is set obtaining an instance identity. The

procedure to carry out the provision is described in the [GUIDES]. The ThingName is stored by the user in

the chosen location (e.g. Flash, SE, etc…) and is accessible during the TOE execution.

There is no way to change this instance identity during the whole life of the deployed TOE.

3.2.3 SECURE UPDATE OF PLATFORM

The platform can be updated to a newer version in the field such that the integrity, authenticity and

confidentiality of the platform is maintained.

Conformance rationale:

Upon being initialized OTA Agent will check for new update by sending a message to the configured

server. The OTA Update Manager service relies on existing security mechanisms, such as Transport Layer

Security (TLS) mutual authentication, used by AWS IoT.

When server has a new update to serve it will send a JSON formatted message containing all the update

meta-data to the OTA Agent which will parse it. Depending on the configuration the agent will either

store the new image in a file, or write it to a specified flash address which has been reserved as storage

for updates. If the update is accepted, the OTA Agent will start receiving packets from the server to be

stored on the device, and will validate if the file is correct by checking its signature.

After validation the OTA Agent will notify the application about the result of update and outsourcing task

of scheduling software restart, using board specific restart functionality.

After the device restarts it will commence running the new (updated) TOE software image.

The application developer is required to make the update mechanism available via its infrastructure, as

described in section “Security Objectives for the operational environment”.

3.2.4 SECURE UPDATE OF APPLICATION

The application can be updated to a newer version in the field such that the integrity, authenticity and

confidentiality of the application is maintained.

Conformance rationale:

The over-the-air (OTA) Agent is designed to simplify the amount of code the app developer must write to

add OTA update functionality to the product. That integration burden consists primarily of initialization

of the OTA Agent and, optionally, creating a custom callback function for responding to the OTA

completion event messages.

For a client to accept an OTA update, the version number of the update it’s receiving needs to be higher

than the version of the firmware that it’s currently running.

The application version of the device software is set in the “ota_application_version.h” header file with

the “APP_VERSION_MAJOR”, “APP_VERSION_MINOR”, and the “APP_VERSION_BUILD” macros.

3.2.5 SECURE COMMUNICATION SUPPORT

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 13/20

The platform provides the application with one or more secure communication channel(s).

The secure communication channel authenticates <configured endpoints> and protects against

<disclosure, modification and replay> of messages between the endpoints, using <TLSv1.2 and

TLSv1.3>.

Conformance rationale:

The app developer can use the TLS library to create embedded applications that communicate securely.

The library is designed to make onboarding easier for software developers from various network

programming backgrounds.

According to [GUIDES], the developer is required to force the use of TLS and to set the root of trust server

certificate for the socket.

Note that the library will use the 3rd party configured TLS library (mbed or WolfSSL).

3.2.6 SOFTWARE ATTACKER RESISTANCE: ISOLATION OF PLATFORM

The platform provides isolation between the application and itself, such that an attacker able to run

code as an application on the platform cannot compromise the other functional requirements.

Conformance rationale:

FreeRTOS supports privileged and unprivileged tasks using the support of a MPU when available.

The data maintained by the RTOS kernel (all non stack data that is private to the FreeRTOS source files) is

located in a region of RAM that can only be accessed while the microcontroller is in Privileged mode.

FreeRTOS APIs are located in a region of Flash that can only be accessed while the microcontroller is in

Privileged mode. These APIs are made available to unprivileged tasks via System Calls which causes a

temporary switch to Privilege mode. The privilege escalations are only allowed from inside the System

Calls. This prevents privilege escalations originating from an unprivileged task (other than escalations

performed by the hardware itself when an interrupt is entered).

System peripherals can only be accessed while the microcontroller is in Privileged mode. Standard

peripherals (UARTs, etc.) are accessible by any code but can be explicitly protected using a user definable

memory region.

3.2.7 SOFTWARE ATTACKER RESISTANCE: ISOLATION OF PLATFORM PARTS

The platform provides isolation between platform parts, such that an attacker able to run code in <the

data memory> can compromise neither the integrity and confidentiality of <the executable memory>

nor the provision of any other security functional requirements.

Conformance rationale:

The platform provides isolation between the executable and the data memory. By not allowing any

program execution from data memory, any arbitrary code execution attack based on a code injection

vulnerability can be prevented as program memory will be read-only and data memory will be non-

executable. This is done by using a special linker script which locates the data and code memory in

different regions and then calling an MPU_Init function which sets the isolation using the MPU.

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 14/20

The application developer is required to use a MPU enabled hardware platform as described in section

“Security Objectives for the operational environment”.

3.2.8 SOFTWARE ATTACKER RESISTANCE: ISOLATION OF APPLICATION PARTS

The platform provides isolation between parts of the application, such that an attacker able to run

code as one of the <unprivileged tasks> cannot compromise the integrity and confidentiality of the

other application parts.

Conformance rationale:

Tasks can be created to run in either Privileged mode or Unprivileged mode. Unprivileged tasks can only

access their own stack and a limited number of user definable memory regions. This limit is determined

by the capability of the MPU and can be adjusted by configuration. User definable memory regions are

assigned to tasks when the task is created, and can be reconfigured at run time if required (A Privileged

mode task can set itself into unprivileged mode, but once in unprivileged mode it cannot set itself back to

privileged mode):

- Privileged Tasks: A privileged task has access to the entire memory map. Privileged tasks can be

created using either the xTaskCreate() or xTaskCreateRestricted() API function (and their static

versions xTaskCreateStatic() and xTaskCreateRestrictedStatic()).

- Unprivileged Tasks: An unprivileged task only has access to its own stack. In addition, it can be

granted access to a limited number of user definable memory regions (limited by MPU

capability). Unprivileged tasks can only be created using the xTaskCreateRestricted() API. Note

that xTaskCreate() API must not be used to create an unprivileged task.

No data memory is shared between Unprivileged tasks, but Unprivileged tasks can pass messages to

each other using the standard queue and semaphore mechanisms. Shared memory regions can be

explicitly created by using a user definable memory region but this is discouraged.

A Privileged mode task can set itself into Unprivileged mode, but once in Unprivileged mode it cannot set

itself back to Privileged mode.

The application developer is required to use a MPU enabled hardware platform as described in section

“Security Objectives for the operational environment”.

3.2.9 CRYPTOGRAPHIC OPERATION

The platform provides the application with <table below operations> functionality with <table below

algorithms> as specified in <table below specification> for key lengths <table below list of key

lengths> and modes <table below list of modes>.

The following table provides iterations of this SFR:

Operations Algorithm Specification Key lenghts Modes

SigGen, SigVer ECDSA FIPS 186-4 256 bits Curve: P-256

SigGen, SigVer RSA FIPS 186-4 2048 N/A

Hash SHS FIPS 180-4 N/A SHA2-256

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 15/20

Conformance rationale:

Cryptographic functionality is provided through the PKCS#11 interface, that abstracts two possible

configurations, which need to be defined in compilation time:

- WolfSSL version 4.5.0: The wolfSSL embedded SSL library is a lightweight, portable, C-language-

based SSL/TLS library targeted at IoT, embedded, and RTOS environments primarily because of

its size, speed, and feature set. WolfSSL is FIPS 140-2 certified as can be seen in

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389

- mbed TLS version 2.24.0: mbed TLS offers an SSL library with an intuitive API and readable

source code, so the app developer can actually understand what the code does. In addition, the

mbed TLS modules are as loosely coupled as possible and written in the portable C language.

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3389

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 16/20

4 SESIP2 MAPPING AND SUFFICIENCY RATIONALES

Assurance Class Assurance Families Covered by Rationale

ASE: Security
Target evaluation

ASE_INT.1 ST
Introduction

Section
“Introduction”
and “Title”

The ST reference is
in the Title, the TOE
reference in the
“Platform
reference”, the TOE
overview and
description in
“Platform functional
overview and
description”.

ASE_OBJ.1 Security
requirements for the
operational
environment

Section “

Security
Objectives for
the operational
environment”

The objectives for
the operational
environment in “

Security Objectives
for the operational
environment” refers
to the guidance
documents.

ASE_REQ.3 Listed
Security requirements

Section “Security
Functional
Requirements”

All SFRs in this ST are
taken from [SESIP].

“Verification of
Platform Identity” is
included.

“Secure Update of
Platform” is
included.

ASE_TSS.1 TOE
Summary Specification

Section “

Security
requirements
and
implementation”

All SFRs are listed
per definition, and
for each SFR the
implementation and
verification are
defined in Security
Functional
Requirements.

ADV: Development ADV_FSP.4 Complete
functional specification

Section
“Included
guidance
documents”. API
documents.

The guidance
documents include
the API needed to
interact with the
TOE and invoke the
implemented
security
functionality.

AGD: Guidance
documents

AGD_OPE.1

Operational user

guidance

Section
“Included
guidance
documents”.
[GUIDES].

The platform
evaluator will
determine whether
the provided
evidence is suitable
to meet the
requirement.

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 17/20

AGD_PRE.1

Preparative

procedures

Section
“Included
guidance
documents”.
[GUIDES].

The platform
evaluator will
determine whether
the provided
evidence is suitable
to meet the
requirement.

ALC: Life-cycle
support

ALC_FLR.2 Flaw
reporting procedures

Section “Flaw
Reporting
Procedure
(ALC_FLR.2)”

The flaw reporting
and remediation
procedure is
described.

ATE: Tests ATE_IND.1 Independent
testing: conformance

N.A.
An independent
testing is
performed by
the platform
evaluator to
ascertain the
presence of
conformance
problems.

The platform
evaluator performs
independent testing,
to confirm that there
are no conformance
problems.

AVA_VAN.2 AVA_VAN.2
Vulnerability analysis

N.A.
A vulnerability
analysis is
performed by
the platform
evaluator to
ascertain the
presence of
potential
vulnerabilities.

The platform
evaluator performs
penetration testing,
to confirm that the
potential
vulnerabilities
cannot be exploited
in the operational
environment for the
TOE. Penetration
testing is performed
by the platform
evaluator assuming
an attack potential
of Basic.

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 18/20

5 REFERENCES

Code Reference

[SESIP] GlobalPlatform Technology, Security Evaluation
Standard for IoT Platforms (SESIP), GP_FST_070,
Public Release v1.0, March 2020

[README_FIRST] README FIRST.txt 202012.00-LTS

[KERNEL-API] FreeRTOS Kernel API Reference 10.4.3

[TCP-API] FreeRTOS+TCP API Rerefence 2.3.2

[corePKCS#11-API] PKCS#11 Cryptoki Library API Reference 3.0.0

[OTA-API] Over the Air (OTA) Update library API Reference
2.0.0

[mbed TLS-API] Transport Layer Security Library API Reference
2.24.0

[WOLFSSL-GUIDE] wolfSSL User Manual 4.1.0

[WOLFSSL-MIGRATION] FreeRTOS with mbedTLS to FreeRTOS with
wolfSSL Migration Guide 1.0

[QUALIFICATION] FreeRTOS Qualification Guide 2020

[GUIDES] SESIP additional guidance for FreeRTOS 1.5

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 19/20

6 ACRONYMS

Acronym Description

AES Advanced Encryption Standard

AWS Amazon Web Services

API Application Programming Interface

BLE Bluetooth Low Energy

CC Common Criteria

CVE Common Vulnerability Exposure

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

GNU GNU’s Not Unix

GP Global Platform

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LTS Long Term Support

MISRA Motor Industry Software Reliability Association

MCU Micro Controller Unit

MPU Memory Protection Unit

MQTT Message Queuing Telemetry Transport

OTA Over the Air

PKCS Public-Key Cryptography Standards

RSA Rivest, Shamir, Adleman

RTOS Real Time Operating System

SESIP Security Evaluation Standard for IoT Platforms

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSL Secure Sockets Layer

 Version: 1.9 Date: 2021/01/14

SESIP Security Target for FreeRTOS

 PAGE 20/20

ST Security Target

TCP Transport Control Protocol

TLS Transport Layer Security

TOE Target of Evaluation

	1 Introduction
	1.1 ST reference
	1.2 Platform reference
	1.3 Included guidance documents
	1.4 Platform functional overview and description
	1.4.1 Overview
	1.4.2 TOE Scope

	2 Security Objectives for the operational environment
	2.1 Platform Objectives for the Operational Environment

	3 Security requirements and implementation
	3.1 Security Assurance Requirements
	3.1.1 Flaw Reporting Procedure (ALC_FLR.2)

	3.2 Security Functional Requirements
	3.2.1 Verification of Platform Identity
	3.2.2 Verification of Platform Instance Identity
	3.2.3 Secure Update of Platform
	3.2.4 Secure Update of Application
	3.2.5 Secure Communication Support
	3.2.6 Software Attacker Resistance: Isolation of Platform
	3.2.7 Software Attacker Resistance: Isolation of Platform Parts
	3.2.8 Software Attacker Resistance: Isolation of Application Parts
	3.2.9 Cryptographic Operation

	4 SESIP2 Mapping and sufficiency rationales
	5 References
	6 Acronyms

