
1

Security Target for Secure Thingz
Secure Boot Manager

Secure Thingz Ltd

Version Change date Author Notes

1 2019-09-12 Amyas Phillips Complete first draft

2 2019-09-13 Amyas Phillips Internal STz review

3 2019-09-27 Amyas Phillips Address feedback from evaluator

4 2019-11-15 Amyas Phillips Address feedback from evaluator

5 2019-12-03 Amyas Phillips Revised vulnerability analysis

6 2019-12-11 Amyas Phillips Minor corrections

7 2019-12-17 Amyas Phillips Minor corrections

2

1 Introduction

The Security Target describes the Platform (in this chapter) and the exact security properties
of the Platform that are evaluated under [SESIP] (in chapter “Security requirements and
implementation”) and that a potential consumer can rely upon the product upholding if
they fulfill the objectives for the environment (in chapter “Security Objectives for the
operational environment”).

SESIP v1.3 is used in this document.

1.1 ST reference

See title page.

1.2 Platform reference

TOE name Secure Thingz Secure Boot Manager

TOE version 1.30

TOE identification 1.30

TOE Type Secure bootloader for microcontrollers used in IoT applications

1.3 Included guidance documents

The following documents are included with the platform:

Reference Name Version

[Manual] Embedded Trust User Guide 2

1.4 Platform functional overview and description

The Target of Evaluation (TOE) consists of a bootloader for microcontrollers (MCUs) called
the Secure Boot Manager (SBM).

The TOE is intended to be used by an embedded C developer who integrates it into an
Internet of Things (IoT) Product, along with an IoT Application and other parts of an IoT
Platform.

In SESIP terms, the TOE is a component of the IoT Platform. The TOE scope is depicted in
Figure 1. The blue block is within the evaluated scope and the grey blocks are outside of the
evaluated scope. Out of scope are the IoT Application, the other components of the IoT
Platform including the RTOS and the microcontroller, the integrated development
environment (IDE) used to configure and build the TOE, and the programming system used
to provision the TOE onto the microcontroller.

3

Figure 1 TOE scope (in blue) in terms of SESIP

The TOE is a specialised application that is run when the microcontroller starts, before the
user application, to which it provides several security benefits. The main security features of
the TOE are as follows:

• Configuration of hardware security features. The TOE ensures that hardware
security features of each supported microcontroller are used effectively, for example
to write-protect the TOE, set debug lock features, store unique device keys, and set
lifecycle states.

• Provisionable key store. The TOE accesses a data structure in Flash memory called
the Provisioned Data Block (PDB). This data structure includes device private keys,
and trust anchor certificates, as specified by the composite developer. The PDB is
created, personalised and programmed onto each device by a compatible
provisioning system in the factory, providing each device with a unique
cryptographic identity. Where suitable hardware features are available the TOE sets
access permissions so that data in the PDB cannot be modified by the user
application, before passing control to that application. Where hardware features for
secure key generation and storage such as a PUF or silicon root of trust (ROT) are
provided, device secret keys are generated and stored there instead of in the PDB.

• Anti-cloning. Multiple features protect firmware from being cloned onto other
devices. Excepting during development, the TOE permanently activates debug lock
features of the host microcontroller to prevent external readout or modification of
the internal firmware. The device hardware ID is used to seed a hash of the
provisioned data that is included in the TOE at provisioning time, allowing the TOE to
verify that it is not running on a cloned device. The device hardware ID can also be
incorporated into device identity certificates included in the provisioned data,
allowing the user application to verify that it is not running on a cloned device.

• Secure boot. The TOE receives the program pointer immediately on device reset.
The TOE checks that a signature over the main application image is present and
validates it against a trust anchor stored in the PDB, proving the authenticity of the
main application image. Finally, the TOE passes the program pointer to the user
application. Using microcontroller-specific features, the TOE write-protects itself to

4

ensure that a compromised user application cannot persist itself by also
compromising the trusted bootloader.

• Firmware update. The TOE includes an installer, which determines whether a more
recent valid user application image is available, and if so, installs that before
executing it. New images must be linked for a predetermined location in memory
known as the active slot, packaged with version metadata, signed by a party trusted
by the TOE, distributed to target devices, and stored in a predetermined location in
memory known as the update slot by another process, usually the user application.
The active slot is always located in internal Flash memory in execute-in-place (XIP)
devices, aligned on erase sectors. The update slot can be located in internal Flash
memory, also aligned on erase sectors, or it can be in external serial Flash. By having
the installer copy new images into a fixed location before executing them, reliance
on position-independent code (PIC), runtime linking, multiple versions of images
linked for different locations, or knowledge of slot state outside of the IoT device is
avoided. Rollbacks can be accomplished only by repackaging an older image with a
newer version number and distributing that for installation.

The TOE is located at the reset vector of the microcontroller (see Figure 2) so that on start it
can perform a sequence of operations before passing control to the user application.

Figure 2 Example flash memory layout of MCU devices using the TOE (the SBM bootloader).

While the TOE must be located at the reset vector, the location of other slots is
configurable, subject to hardware constraints and the SBM features enabled by the
developer:

• The update slot may be located in external Flash.

5

• The user application is always located in internal Flash in the active slot and must be
linked for that location.

• The Installed Update Header slot is used by the TOE to store metadata received with
the user application image, including version information and a signature.

• All slots in internal Flash are aligned on Flash erase sectors so that they and/or their
neighboring slots can be independently updated.

Knowledge of the memory map is built into the TOE. The TOE makes use of a default
memory map and other hardware-specific features for each supported microcontroller.
Supported microcontrollers are listed in Table 1.

Vendor MCU family MCU variant
(excluding package variants)

Microchip SAML11 SAML11E16A

NXP K65 MK65FN2M0VMI18

NXP K66 MK66FN2M0VMD18

Renesas RX65N R5F565NEHDFC

ST STM32F412 STM32F412ZGT6

ST STM32F777 STM32F777ZIT6

ST STM32L4S5 STM32L4S5ZIT6

ST STM32F405 STM32F405VGT6

ST STM32F407 STM32F407VG

ST STM32H7 STM32H753XI

ST STM32H7 STM32H753ZI

ST STM32L4 STM32L475VG

Table 1 Supported microcontrollers

The TOE is provided to embedded developers as C source code in an IAR Embedded
Workbench (a popular IDE) project that is generated by an IDE plugin called Embedded
Trust. The project includes all source code plus configuration files for the selected
microcontroller. This allows the TOE source code to be inspected as part of any security
audit.

IAR Embedded Workbench and the Embedded Trust plugin are distributed in Windows
installers downloadable from https://iar.com. Once installed, the Embedded Trust release
notes and user guide and example projects are accessible directly via the Help menu.
Example projects are accessible via Help / Information Centre / Example Projects /
Embedded Trust / Getting Started. A whitepaper “Getting started with IoT security” is
accessible via Help / Information Centre / Integrated solutions / Additional downloads and
support files.

When the IDE builds the TOE project, the Embedded Trust plugin also creates a set of
instructions for a factory provisioning system provided as another component of the
Embedded Trust product, describing how the PDB is to be constructed and programmed
onto each device along with the built TOE image. The PDB in each device contains a unique
secret identity key, identity certificate chain, and firmware trust anchors. Developers can
configure the identity certificate chain and other details of the provisioning process in the
graphical user interface (GUI) when creating a new bootloader project.

https://iar.com/

6

The workflow for preparing and provisioning the TOE onto microcontrollers in IoT devices is
summarized in Figure 3.

Figure 3: Overview of how the TOE is prepared, and provisioned onto microcontrollers

Several optional developer-specific or board-specific functions in the TOE are provided in
the source code, where they are called at specific points in the start-up sequence. These
functions are called “OEM API functions” and must be implemented by the

developer. Developers are instructed not to modify bootloader code or behavior outside of
these functions because doing so will lead to unsupported behavior.

The OEM API functions provide log outputs that can be routed to a serial line or a log file, a
handler for boot failures, and a tamper-detection handler. By default, they are disabled.
They are enabled by setting conditional compilation flags in the TOE source code – flags
which are in turn set by options selected in the IDE by the developer when creating the
bootloader project. These selections also set a number of other conditional compilation
flags that can be used to disable certain features of the TOE for convenience during
development.

Developers create a separate project for the user application, where they have a free hand.
The TOE exposes a set of APIs called the “Application APIs” to the user application as
wrapper functions in a library provided for inclusion in that application. The wrapper
functions map arguments into and results out of buffers whose addresses and sizes are
passed into a function in the TOE called the SBM Access Method, a pointer to which is
located at a fixed memory location in the TOE, set using #defines in both the TOE (the
bootloader) and the user application C code. These Application APIs expose functions for:

• Signing, validation and key derivation

• Checking the contents of the update slot and initiating an update

• Checking the metadata of the installed application

• Checking the status of PDB slots

• Retrieving certificates from the PDB

• Checking the version of the TOE

When the Embedded Workbench IDE builds the user application the Embedded Trust plugin
packages the resulting binary image in a structure called a software update (SWUP) file. The

7

SWUP includes metadata about the package’s image including its version number, a
signature created using the developer’s secret firmware signing key, and information
allowing the target devices to decrypt the firmware image.

The TOE installer will install only valid SWUPs found in the update slot. SWUPs may be
delivered into the update slot over the air to deployed IoT devices via a running previous
version of the user application or programmed directly into the update slot on the
production line in the factory at the same time as the TOE is provisioned.

8

2 Security Objectives for the operational environment

In order for the platform to fulfill its security requirements, the operational environment
(technical or procedural) must fulfil the following objectives.

• Only authorized and trustworthy personnel should have access to the TOE
development environment (as described in [Manual] section “Mastering”).

9

3 Security requirements and implementation
3.1 Security Assurance Requirements

The claimed assurance requirements package is: SESIP1 as defined in [SESIP].

3.1.1 Flaw Reporting Procedure (ALC_FLR.2)

In accordance with the requirement for a flaw reporting procedure (ALC_FLR.2), including a
process to give generate any needed update and distribute it, the developer has defined the
following procedure:

Flaws can be reported by email at securityalert@securethingz.com or by web form at
https://www.securethingz.com/contact/ . These channels are monitored by the
SecureThingz customer service team. Bug reports including security flaws are passed to the
Embedded Trust development team. A fix is developed and merged into the current release
candidate version of the TOE, where it forms part of the next release of the Embedded Trust
product, of which the TOE is a part. Embedded Trust releases are typically several months
apart. For severe issues an updated version of the current release is made available as soon
as the fix is available.

Customers are notified by email when new releases of Embedded Trust are made. Known
issues and new fixes are described in the release notes of each release. The reporter of the
issue is updated on progress via IAR customer support.

When new releases of the TOE are made customers can update their factory production
lines to provision the newer release onto newly manufactured IoT devices. They cannot
update the TOE on devices that have already been provisioned with a previous version, for
two reasons:

1. As a bootloader, a function of the TOE is to verify and install updated user
application images. It cannot update itself, because in a XIP microcontroller that
would require replacing the code it is currently executing – something that cannot
be accomplished reliably.

2. As a keystore, a function of the TOE is to provide the host device with an immutable
identity, which by definition must not change. On microcontrollers where the root
identity secrets are stored as part of the TOE, the TOE cannot be updated without
issuing a new identity to the device.

To minimize the risk of serious security flaws in the TOE leading to compromise of the IoT
device, its codebase is kept as small and stable as possible.

3.1.2 Vulnerability Survey (AVA_VAN.1)

AVA_VAN.1 requires that the TOE demonstrate an attack potential rating of at least 16. We
do so in two steps. First, we review known vulnerabilities in the TOE and its components.
Second, we systematically review potential attacks on the TOE. At each step, we show that
no attacks with attack potential less than 16 can be identified.

mailto:securityalert@securethingz.com
https://www.securethingz.com/contact/

10

3.1.2.1 Survey of known vulnerabilities

Table 2 lists software components used in the TOE, including third-party libraries. Details of
each are provided, including how vulnerability notices are monitored.

Name of
software
component

Version Supports specific
microcontrollers
?

Maintainer Where is it
obtained?

How are
announcements
and new
releases
monitored?

Secure Boot
Manager

1.30 See Table 1 Secure Thingz https://www.iar.co
m/embedded_trust
/

We invite
vulnerability
reports directly, per
section 3.1.1 Flaw
Reporting
Procedure
(ALC_FLR.2), and
monitor public
channels including
https://cve.mitre.o
rg/cve/

microecc 1.0 (commit
3345d50)

n/a Ken MacKay https://github.com
/kmackay/micro-
ecc

We are notified of
new releases by
GitHub and
monitor them for
vulnerability
announcements

SHA256 RFC4634 n/a IETF https://datatracker
.ietf.org/doc/rfc463
4/

We monitor IETF -
Announce mailing
list for vulnerability
announcements
about draft-
eastlake-sha2 or
draft-eastlake-
sha2b

libtomcrypt 1.17 n/a libtom team https://github.com
/libtom/libtomcryp
t

We are notified of
new releases by
GitHub and
monitor them for
vulnerability
announcements

jansson 2.12 n/a Petri Lehtinen https://github.com
/akheron/jansson

We monitor
https://groups.goo
gle.com/forum/#!f
orum/jansson-
users and new
releases on GitHub
for vulnerability
announcements.

Atmel SAML11
Series Device
Support

1.0.109 SAML11E16A Microchip http://packs.downl
oad.atmel.com/

We subscribe to
Microchip PCNs for
SAML11 at
https://www.micro
chip.com/pcn

MCUXpresso
SDK for Kinetis
Freedom K66F

2.50 MK65FN2M0VMI
18,
MK66FN2M0VM
D18

NXP https://mcuxpresso
.nxp.com/en/welco
me

We subscribe to
product
announcements
from NXP and
monitor NXP user
forums at
https://community.
nxp.com/communit
y/mcuxpresso/mcu
xpresso-sdk for
vulnerability
announcements

https://www.iar.com/embedded_trust/
https://www.iar.com/embedded_trust/
https://www.iar.com/embedded_trust/
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://datatracker.ietf.org/doc/rfc4634/
https://datatracker.ietf.org/doc/rfc4634/
https://datatracker.ietf.org/doc/rfc4634/
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://github.com/akheron/jansson
https://github.com/akheron/jansson
http://packs.download.atmel.com/
http://packs.download.atmel.com/
https://www.microchip.com/pcn
https://www.microchip.com/pcn
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

11

Name of
software
component

Version Supports specific
microcontrollers
?

Maintainer Where is it
obtained?

How are
announcements
and new
releases
monitored?

STM32CubeF7 1.15.0 STM32F777ZIT6 ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
ef7.html

We subscribe to
product
announcements
from ST and
monitor ST user
forums at
https://community.
st.com/ for
vulnerability
announcements.

STM32CubeF4 1.24 STM32F405VGT6
, STM32F407VG,
STM32F412ZGT6

ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
ef4.html

We subscribe to
product
announcements
from ST and
monitor ST user
forums at
https://community.
st.com/ for
vulnerability
announcements.

STM32CubeL4 1.14.0 STM32L4S5ZIT6 ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
el4.html

We subscribe to
product
announcements
from ST and
monitor ST user
forums at
https://community.
st.com/ for
vulnerability
announcements.

STM32CubeH7 1.50 STM32H753XI,
STM32H753ZI

ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
eh7.html

We subscribe to
product
announcements
from ST and
monitor ST user
forums at
https://community.
st.com/ for
vulnerability
announcements.

Trusted Secure
IP Driver

1.05 R5F565NEHDFC Renesas https://www.renes
as.com/eu/en/prod
ucts/software-
tools/software-os-
middleware-
driver/security-
crypto/trusted-
secure-ip-
driver.html

Renesas account
managers contact
us with any
vulnerability
announcements.

RX Family RX
Driver Package

1.13 R5F565NEHDFC Renesas https://www.renes
as.com/eu/en/prod
ucts/software-
tools/software-os-
middleware-
driver/software-
package/rx-driver-
package.html

We subscribe to
product
announcements
through Renesas
MyPages and
https://www.renes
as.com/us/en/supp
ort/pcnsearch.html
and monitor them
for security
vulnerabilities.

Table 2 First- and third-party software used in the TOE, and associated channels which are monitored for
security vulnerability announcements.

https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://community.st.com/
https://community.st.com/
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://community.st.com/
https://community.st.com/
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://community.st.com/
https://community.st.com/
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/us/en/support/pcnsearch.html
https://www.renesas.com/us/en/support/pcnsearch.html
https://www.renesas.com/us/en/support/pcnsearch.html

12

A search of the public Common Vulnerabilities and Exposures1 (CVE) database for known
vulnerabilities in these components shows that no applicable vulnerabilities have been
reported.

Two CVEs do exist against libtomcrypt 1.17 but are not applicable to the TOE:

i) CVE-2019-17362 reports a vulnerability in the der_decode_utf8_string function.
This function is not present in the TOE.

ii) CVE-2018-12437 reports that under certain conditions a vulnerability exists in
the ECDSA signature function. The applicable conditions are execution of
libtomcrypt at the same time as attacker code on a microprocessor with memory
caches. The TOE is deployed only in MCU-based systems that do not feature
memory caches.

3.1.2.2 Survey of potential vulnerabilities

This survey uses the method of attack trees2 to develop a tree of possible attack chains on
the TOE, using information about its design and implementation. Well-known methods of
attacking secure embedded systems have been considered at each node in the attack tree.
Where appropriate they have been identified as potential attacks. The document [AM]
provides an enumeration of well-known methods of attack.

Note that the survey considers only attacks on the TOE. Attacks on a composite system may
be able to proceed to the attackers’ goals by other means.

Attack trees are constructed by working backwards from the attackers’ goals:

Goal A: Extract software IP
A1. Modify the TOE so that it does not disable debug interfaces on first boot

A.1.1. Alter TOE in supply chain or on-chip before first boot
A2. Extract firmware decryption group private key

A.2.1. Probe or image internal Flash memory to obtain firmware decryption key
A.2.2. Use simple power analysis (SPA) / differential power analysis (DPA) during

firmware decryption operations
A.2.3. Use higher-order DPA during firmware decryption operations
A.2.4. Use electromagnetic emissions analysis (EMA) during firmware decryption

operations
A.2.5. Use fault analysis (FA) during firmware decryption operations

A3. Exploit bugs or undocumented features in the TOE to externally influence it during boot
to expose firmware decryption group private key or proprietary firmware

A4. Exploit factory test modes to access provisioned data

Goal B: Take over a device (execute attacker's software)
B1. Have TOE boot malware placed in the active slot

B.1.1. [AND] Re-enable debug access
B.1.1.1. Inject faults to re-enable debug access

1 https://cve.mitre.org/cve/search_cve_list.html
2 https://www.schneier.com/academic/archives/1999/12/attack_trees.html

https://cve.mitre.org/cve/search_cve_list.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

13

B.1.1.2. Exploit bugs or undocumented features in the TOE to externally influence it
during boot to re-enable debug access

B.1.2. [AND] Disable TOE validation of the active application during boot
B.1.2.1. Inject faults to disable validation of the active application during boot
B.1.2.2. Modify the running user application to write changes to the installed TOE

B.1.2.2.1. Provoke a buffer overflow in the user application to execute specially
crafted code to write changes to the TOE

B.1.2.2.2. Compromise unvalidated software loaded outside the validated boot
chain to write changes to the TOE

B.1.2.3. Modify the running TOE to write changes to its own code
B.1.2.3.1. Send a malformed SWUP to cause undocumented behaviour in the TOE

such that the attacker can execute code to write changes to the TOE
B.1.2.4. Probe the TOE in internal Flash to write changes to its code
B.1.2.5. See [Alter TOE in supply chain or on-chip before first boot]
B.1.2.6. Exploit bugs or undocumented features in the TOE to circumvent validation of

the user application at boot
B2. Have TOE install invalid SWUP containing malware

B.2.1. [AND] Inject faults during authentication of invalid SWUP
B.2.2. [AND] Deliver invalid SWUP to target device

B3. Have TOE install stale but validly signed SWUPs containing old firmware with known
vulnerabilities

Goal C: Masquerade as an authentic device
C1. Exfiltrate device’s private identity key using attacker's software

C.1.1. See [Take over the device (execute attacker's software)]
C.1.2. Provoke a buffer overflow in the user application to execute specially crafted code

to exfiltrate the device identity key
C2. Use simple SPA/DPA during elliptic curve digital signal algorithm (ECDSA) signature

operations to obtain device identity key
C3. Use higher-order DPA during ECDSA signature operations to obtain device identity key
C4. Use EMA during ECDSA signature operations to obtain device identity key
C5. Modify random number generator (RNG) behaviour during ECDSA operations to obtain

device identity key
C6. Probe or image the device private key in internal Flash memory
C7. Exploit bugs or undocumented features in the TOE to cause it to expose device's private

key externally during boot
C8. See [Exploit factory test modes to access provisioned data]
C9. Use FA during ECDSA signature operations to obtain device identity key

Goal D: Manufacture counterfeit devices
D1. Install firmware image on unauthorised devices

D.1.1. [AND] See [Extract software IP]
D.1.2. [AND] Run software on unauthorized devices

Goal E: Remotely disable a deployed device
E1. Send a malformed SWUP such that the TOE installs a non-functional user application

E.1.1. See [Take over the device (execute attacker's software)]

14

E2. Modify the TOE to always invalidate the active and update slots
E.2.1. See [Modify the running user application to write changes to the installed TOE]

and [Modify the running TOE to write changes to its own code]

Leaf nodes in the attack tree describe attacks on the TOE. Next, we discuss the feasibility of
these attacks.

Attack Feasibility

A.1.1. Alter TOE in supply
chain or on-chip before first
boot

Supply-chain security is out of scope of the TOE.

Users are advised to ensure they have an authentic copy
of IAR Embedded Workbench with Embedded Trust
plugin, and to employ a secure provisioning system to
deliver their project from development onto devices.

Users are advised to ensure the security of provisioned
information on-chip before first boot by operating a
secure production environment, by utilizing a secure
firmware programming interface (where available),
and/or by disabling the debug interface using the
programmer immediately after initial programming.

A.2.1. Probe or image
internal Flash memory to
obtain firmware decryption
key

B.1.2.4. Probe the TOE in
internal Flash to write
changes to its code

C6. Probe or image the device
private key in internal Flash
memory

Resistance to probing attacks is in a feature of the
microcontroller platform and out of scope of the TOE.

On devices, boards or microcontrollers fitted with
latching tamper detection circuits, the tamper detection
state line can be checked at each boot by the OEM API
function oem_return_to_provisioned_state_now, which
will cause the TOE to erase the active and update slots if
evaluated to true. The composite designer must
implement or specify a tamper detection mesh to use
this feature.

A.2.2. Use simple SPA/DPA
during firmware decryption
operations

A.2.3. Use higher-order DPA
during firmware decryption
operations

An attacker with the ability to have the TOE decrypt
SWUPs while monitoring power or emissions side
channels may attempt to extract the firmware
decryption group private key, hence the ephemeral
symmetric firmware encryption key, and thus the
software IP. The TOE employs a crypto library (micro-
ecc) that implements anti-SPA/DPA measures to
frustrate this. These measures are detailed in
[TJERAND].

Further, the TOE severely restricts the number of
operations an attacker can trace by checking that new

15

SWUPs are validly signed and declare a higher software
version number, before decrypting them.

A.2.4. Use EMA during
firmware decryption
operations

C4. Use EMA during ECDSA
signature operations to obtain
device identity key

Electromagnetic emissions may leak information, at
whole-chip or die level. The TOE is not designed with a
design goal of preventing information leakage through
near-field or far-field electromagnetic emissions, and
other than by minimizing the use of private keys
provides no protection against attacks utilizing such
side-channels.

The TOE effectively limits the number of usages of the
firmware decryption group private key by checking that
new SWUPs are validly signed and declare a higher
software version number, before decrypting them.

The device identity key is used to encrypt a random hash
challenge during each transport layer security (TLS)
protocol handshake. An attacker with physical access
can attempt an EMA side-channel analysis on it by
stimulating multiple TLS connections. The TOE does not
limit the rate of TLS connections, but the composite
designer may be able to do so at system design level.

To frustrate EMA attacks more completely users must
rely on other parts of the platform, in particular the
MCU hardware, and on device-level design features
such as cans, potting and tamper meshes.

EMA attacks, especially at die level, require expertise
and equipment that at attack rating 22 puts them
beyond the reach of a basic attack potential:

 Identification
phase

Exploitation
phase

Elapsed time <1 week 2 <1 day 3

Expertise Expert 5 Expert 4

Knowledge of
the TOE

Public 0 Public 0

Access to the
TOE

<10
samples

0
<10

samples
0

Equipment Specialised 3 Specialised 4

Open samples Public 0 Public 0

PHASE TOTALS 10 11

ATTACK
RATING

21

A.2.5. Use FA during firmware
decryption operations

C9. Use FA during ECDSA
signature operations to obtain
device identity key

A specialization of fault injection attacks, FA attacks seek
to inject bit errors into cryptographic operations in
tamper-proof microcontrollers, in such a way as to leak
data about secret keys.

This kind of attack requires expertise and equipment
beyond the reach of a basic attack potential:

16

 Identification

phase

Exploitation

phase

Elapsed time <1 week 2 <1 day 3

Expertise Expert 5 Expert 4

Knowledge of
the TOE

Public 0 Public 0

Access to the
TOE

<10
samples

0
<10

samples
0

Equipment Specialised 3 Specialised 4

Open samples Public 0 Public 0

PHASE TOTALS 10 11

ATTACK
RATING

21

A3. Exploit bugs or
undocumented features in the
TOE to externally influence it
during boot to expose
firmware decryption group
private key or proprietary
firmware

The only external input the TOE should accept during
boot is a SWUP stored in external memory. That SWUP
is authenticated before use. Correct and robust behavior
in processing that SWUP is ensured using good
development practices.

A4. Exploit factory test modes
to access provisioned data

No factory test modes are implemented in the TOE.

Factory test modes implemented in the user application
have the same access to secret material as the user
application, potentially approaching equivalence to full
debug access. Implementors of such modes must take
care to permanently disable them before deployment,
or else ensure they do not expose secret material.

B.1.1.1. Inject faults to re-
enable debug access

B.1.1.2. Exploit bugs or
undocumented features in the
TOE to externally influence it
during boot to re-enable
debug access

The TOE irreversibly disables debug and programming
interfaces, preventing attackers with physical access to a
target MCU’s debug ports from obtaining provisioned
data, user data, or software IP. Irreversible debug
lockdown is a required feature on all microcontrollers
supported by the TOE. Once set, no software attack can
reverse it.

The resistance of the MCU’s debug lock feature to fault
injection attacks is out of scope of the TOE.

B.1.2.1. Inject faults to disable
validation of the active
application during boot

B.2.1. [AND] Inject faults
during authentication of
invalid SWUP

An attacker may inject faults during TOE execution by
means of clock or voltage glitches. By causing execution
to skip instructions, this technique can be used to
bypass validations to, for example, install untrusted
code, or to change lifecycle state. It can also be used to
weaken cryptographic functions, potentially allowing
the extraction of private keys.

This kind of attack requires expertise and equipment
that at attack rating 22 puts it beyond the reach of a
basic attack potential:

17

 Identification

phase

Exploitation

phase

Elapsed time <1 week 2 <1 day 3

Expertise Expert 5 Expert 4

Knowledge of
the TOE

Public 0 Public 0

Access to the
TOE

<10
samples

0
<10

samples
0

Equipment Specialised 3 Specialised 4

Open samples Public 0 Public 0

PHASE TOTALS 10 11

ATTACK
RATING

21

B.1.2.2.2. Provoke a buffer
overflow in the user
application to execute
specially crafted code to write
changes to the TOE

C.1.2. Provoke a buffer
overflow in the user
application to execute
specially crafted code to
exfiltrate the device identity
key

A corrupted user application may try to enable malware
to become permanently resident on the device by
disabling boot-time validation of the user application by
the TOE. To prevent modification by a corrupted user
application, the TOE must be protected from internal
write operations.

Use can be made of an immutable first-stage bootloader
in ROM if available. This must be capable of calculating a
hash over the TOE and verifying it is the same as an
immutably stored hash, or the same as that obtained by
decrypting a signature over the TOE using an immutably-
stored public key.

Use can also be made of write-protection features
provided by the MCU. The TOE automatically write-
protects itself on first boot on all supported ST
microcontrollers, with the sole exception of the SAM-
L11 where it is expected that the composite developer
will isolate user applications using TrustZone-M trusted
execution environment (TEE) technology.

This is an example of a third option to protect device
secrets from corrupt user applications: using application
isolation mechanisms. MCUs are available with a range
of isolation mechanisms, from none, through OSes
exploiting privileged modes and memory protection
units, to integrated secure elements and TEE
partitioning with trusted supervisory firmware. It is up
to the composite developer to configure their chosen
isolation mechanism to prevent writes to the TOE Flash
and direct reads of provisioned data by user applications.

If none of these options is available, composite
developers rely on attackers being unable to find ways
to compromise running software on target devices.
Executing buffer overflow attacks on Harvard
architecture execute-from-flash MCUs is a difficult task
that as well as a suitable buffer overflow vulnerability

18

requires knowledge of at least the firmware binary
image and ideally the source code, where a Flash write
function must be available. Confidence in this approach
can be increased using firewalls and robust API testing.

B.1.2.2.1. Compromise
unvalidated software loaded
outside the validated boot
chain to write changes to the
TOE

Although the TOE validates the next application in the
boot sequence, nothing in the TOE prevents that
application from loading further applications, potentially
including untrusted applications. Composite developers
must take care to write-protect the TOE, employ an
immutable ROM bootloader, or apply appropriate
application isolation techniques in such situations.

B.1.2.3.1. Send a malformed
SWUP to cause
undocumented behaviour in
the TOE such that the attacker
can execute code to write
changes to the TOE

An attacker may try to compromise the TOE directly by
sending a malformed SWUP.

The SBM validates each SWUP’s signature before doing
any further processing, so an attacker would have to
compromise the composite developers’ firmware
repository, firmware signing key or firmware signing
procedures to attempt this. This is outside the scope of
the TOE.

B.1.2.6. Exploit bugs or
undocumented features in the
TOE to circumvent validation
of the user application at boot

The TOE should always validate the user application at
boot. Its correct and robust behavior is ensured using
good development practices.

B.2.2. [AND] Deliver invalid
SWUP to target device

The TOE can process new SWUPs placed in internal or
external Flash memory. SWUPs are expected to be
delivered via external processes. Because the TOE
validates the integrity, freshness and authenticity of
each SWUP those processes are not required to be
secure. For instance, new SWUPs could be placed on a
removable SD card. Nevertheless, use of secure
channels to deliver SWUPs does no harm and further
reduces opportunities for attack.

B3. Have TOE install stale but
validly signed SWUPs
containing old firmware with
known vulnerabilities

Downgrade attacks where a validly signed but old SWUP
with known vulnerabilities is delivered to target devices
to enable further attacks are prevented by having the
TOE check that new SWUPs declare higher application
version number than the currently-installed SWUP
before installing them.

C2. Use simple SPA/DPA
during ECDSA signature
operations to obtain device
identity key

C3. Use higher-order DPA
during ECDSA signature

A device’s identity key is used to encrypt a random hash
challenge during each TLS handshake, so an attacker
with physical access can attempt a side-channel analysis
on it by stimulating one or more TLS connections. The
TOE employs a crypto library (micro-ecc) that

19

operations to obtain device
identity key

implements anti-SPA/DPA measures to frustrate this.
These measures are detailed in [TJERAND].

C5. Modify RNG behaviour
during ECDSA operations to
obtain device identity key

High quality random numbers are essential to many
cryptographic operations. The only such operation
implemented in the TOE is ECDSA signature. An attacker
in possession of an ECDSA signature and the random
number used in its creation can recover the device’s
secret identity key. Thus, the randomness of the RNG is
critical. As part of the physical MCU platform the RNG is
outside the scope of the TOE, but all MCUs supported by
the TOE are equipped with high-quality RNGs, whose
behaviour is not trivial to alter while retaining other
MCU functionality.

C7. Exploit bugs or
undocumented features in the
TOE to cause it to expose
device's private key externally
during boot

The TOE contains no functions that expose devices’
private keys, internally or externally. Its correct and
robust behavior is ensured using good development
practices.

D.1.2. [AND] Run software on
unauthorized devices

The TOE performs a check at boot time, that the
provisioned data includes a hash seeded with the device
hardware ID. A firmware image that has been extracted
from an authentic device, for example by sniffing it from
a serial programming line in the factory, will fail this
check on any other device and the TOE will terminate. A
counterfeiter would have to reverse-engineer and
modify the firmware image to disable this check.

If the counterfeit devices are to connect to a genuine
web service, a further check can be implemented at the
genuine web service that the device certificates are
valid. This is however outside the scope of the TOE.

The following security practices are employed in development of the TOE:

1. Traceability. Code commits are linked back to requirements management. This helps
ensure only documented features enter the codebase.

2. Code review. All code commits undergo review for quality and function before
merging. This helps prevent bugs or undocumented features from entering the
codebase.

3. Unit testing. All functions are subject to unit tests that run automatically on each
merge request. Unit tests are themselves subject to code review, including by
dedicated testers, for thoroughness. Unit tests include valid and invalid inputs. This
helps ensure robust and stable behaviour.

20

4. API testing. All application and OEM APIs are subject to API tests including
malformed requests that run automatically on each merge request. API tests are
themselves subject to code review, including by dedicated testers, for thoroughness.
This helps ensure robust and stable API behaviour.

3.2 Security Functional Requirements

The platform fulfils the following security functional requirements:

3.2.1 Identification of platform type

The platform provides a unique identification of the platform type, including all its parts and
their versions.

Self-assessment:

1. The developer can identify the version of the TOE they are working with in the IAR
Embedded Workbench IDE, where the Embedded Trust plugin in adds an “Embedded
Trust Release Notes” option to the “Help” menu. Selecting the option shows the release
notes in the system web browser. The release notes identify the installed version of the
Embedded Trust plugin. Embedded Trust uses semantic versioning. The TOE is versioned
along with the Embedded Trust plugin.

This is tested by selecting the “Embedded Trust Release Notes” option in the “Help”
menu in IAR Embedded Workbench, and verifying that the system web browser loads
release notes including the correct Embedded Trust version number.

2. The user application can identify the version of the TOE installed using the Application
API STZ_getSBMInformation. This API returns the version number of the TOE. This
version number is optionally defined by the developer by setting the conditional
compilation flag SBM_REPORT_SBM_VERSION and defining the string SBM_VERSION_ID.
The developer is given control of this to allow them to increment the version number for
their bootloader project when they change their implementation of functions called by
the OEM APIs. To keep track of which version of the TOE is installed on which IoT
devices, the developer must keep production records showing what version of the TOE
was installed onto each device. Alternatively they can have connected devices report
SBM-VERSION_ID to a central service, and maintain a separate record of which version
of the TOE is associated with each SBM_VERSION_ID.

This is tested by enabling SBM_REPORT_SBM_VERSION and defining SBM_VERSION_ID
and verifying that this produces a TOE build that reports the correct version number to
the user application via the STZ_getSBMInformation API.

3.2.2 Secure update of platform

The platform can be updated to a newer version in the field such that the integrity,
authenticity and confidentiality of the platform is maintained.

21

3.2.3 Identification of individual platform

The platform provides a unique identification of that specific instantiation of the platform,
including all its parts and their versions.

Self-assessment:

As a provisionable key store the TOE is provisioned with a unique secret identity key (256 bit
ECC key using curve NIST P-256) and a corresponding certificate (PEM format X.509
containing the corresponding 256 bit ECC public key, with a SHA-256 hash). The certificate is
issued by a CA installed on the factory provisioning system and is installed onto the device
with the complete chain of CA certificates back to the root. This certificate provides each
individual device with a unique cryptographic identity, verifiable by challenging the device
to prove possession of the corresponding private key by signing a piece of data provided by
the challenging party. The IETF’s TLS specifications (IETF RFC 5246 and IETF RFC 8446) for
transport-layer security implement such a challenge-response mechanism and are widely
implemented in embedded Internet protocol libraries.

This is tested by provisioning the TOE onto a target microcontroller using the Embedded
Trust provisioning system and having a test user application report the installed identity
certificates and prove possession of the corresponding private key.

3.2.4 Genuine platform instantiation

The platform provides an attestation of the “Identification of platform type” and
“Identification of individual platform”, in a way that cannot be cloned or changed without
detection.

Self-assessment:

Composite developers can guarantee that end users receive only genuine devices, not
clones or counterfeits, by having remote Internet services or the user application or both
check the TOE for a validly signed device identity certificate. Such certificates are only issued
by the factory provisioning system provided as a component of the Embedded Trust
product. This system signs device identity certificates using a CA key generated by the
composite developer and installed via secure channels into a secure provisioning system
located on the authorised production line. Only Embedded Trust provisioning systems
specifically authorised by the composite developer receive this CA key. Without it, no
counterfeiter can issue a valid device identity certificate.

Validly certified devices cannot be cloned either, because their private identity keys are
never exposed either before or after being provisioned onto each device.

This is tested by provisioning the TOE onto a target microcontroller using the Embedded
Trust provisioning system and having a test user application report the installed identity
certificate chain and verifying that the composite developer’s production CA certificate is
present in that chain.

3.2.5 Attested secure state of platform

The platform provides an attestation of the state of the platform, such that it can be
determined that the platform is in a secure state.

22

Self-assessment:

End users and remote services can check that the device’s identity certificate chain includes
the CA certificate of a composite developer that they trust. If such a certificate is present,
and the composite developer is trusted to have securely provisioned the TOE, then the
relying parties can trust that the connecting device is genuine and has executed a secure
boot process, and consequently is running authentic and integral software, that is reporting
correct information about its state.

Because this implementation relies on SFRs “Genuine platform instantiation” and “Secure
initialization of platform”, its validation is derived from the validation of both those SFRs.

3.2.6 Factory reset of platform

The platform can be reset to the state in which it exists when the composite product
embedding the platform is delivered to the user, before any personal user data, user
credentials, or user configuration is present on the platform.

Self-assessment:

After production-time provisioning of the TOE and user application, the IoT device is ready
for operation. During operation, storage of user data is managed by the user application -
the TOE does not store user data. The TOE always remains in the state it was originally after
production.

This is verified by reviewing the code of TOE functions serving application APIs, to ensure
that no data originating in the user application is stored by the TOE.

3.2.7 Secure install of application

The application can be installed in the field such that the integrity, authenticity and
confidentiality of the application is maintained.

Self-assessment:

The composite developer can install a first SWUP file to the update slot on devices in the
field by calling a serial loader from the TOE. This requires setting the conditional compilation
flag SBM_INCLUDE_LOADER so that the TOE calls the OEM API function sbm_serial_loader,
which the composite developer must implement. The TOE will then validate the SWUP and
install the user application into the active slot before passing execution to it.

Validation consists of a check that the SWUP is signed by the composite developer. The
signature is generated by the Embedded Trust plugin in the IAR Embedded Workbench IDE
when the composite developer exports the SWUP. The signature is generated using ECDSA
with NIST curve P-256. The signature is verified by the TOE using the same algorithm, the
necessary trust anchor certificate being part of its provisioned data. This check verifies both
authenticity and integrity of the SWUP.

Application firmware binaries packaged in SWUPs are encrypted using a 128-bit AES key in
GCM mode. This key is derived by both parties using ECIES key agreement as described in
section 3.2.9 part 2. The key pair used in the ECIES procedure by the Embedded Trust plugin
is ephemeral. A new key pair is generated for each SWUP export operation. The key pair
used in the ECIES procedure by the TOE is part of its provisioned data and is known as an

23

Update Group Key pair because it may be provisioned onto a group of devices of the same
underlying hardware platform, which will receive the same SWUP file.

This is tested by building the TOE with a test implementation of the sbm_serial_loader
function that reports on a serial output that it has been called.

3.2.8 Secure update of application

The application can be updated to a newer version in the field such that the integrity,
authenticity and confidentiality of the application is maintained.

Self-assessment:

The composite developer can load an updated version of the application into the update
slots of selected devices in the field by implementing an over-the-air SWUP distribution
mechanism in all over-the-air updatable versions of the application. Once a SWUP has been
downloaded into the update slot it will be validated and decrypted into the active slot by
the TOE on next reset. Reset can be triggered by the running version of the application.

Validation steps include a check that the SWUP is signed by the composite developer as
detailed in section 3.2.7, and that its version number is higher than that of the currently
installed application. Version numbers are set by the composite developer at project build
time and consist of one to three integers, each from 0 to 255, separated by periods, for
example: 9.4.4. Decryption also proceeds as detailed in section 3.2.7.

This is tested by enabling debug access in a test build of the TOE and writing both valid and
invalid SWUP files into the test device’s update slot, verifying that on reset only valid SWUPs
are installed.

3.2.9 Cryptographic operation

The platform provides the application with:

1. ECDSA digital signature generation and verification functions per NIST FIPS 186-4
Digital Signature Standard (DSS) section 6.4, using curve P-256 (i.e. a key length of
256 bits) per section D.1.2.3 of the same document. These functions are made
available in the Application API as STZ_signUsingKey and STZ_verifyUsingKey.

Signature generation is tested by verifying that If the Application API
STZ_signUsingKey is called with a 256b hash and an index to a 256b ECC private key
as arguments, an encrypted version of that hash is returned, decryptable using the
public part of that key and the NIST P-256 curve.

Signature verification is tested by verifying that if the Application API
STZ_verifyUsingKey is called with a 256b encrypted hash and a 256b ECC public key
as arguments, the decrypted hash is returned.

2. ECIES key agreement per NIST SP800 56Ar3 Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm Cryptography, sections 6.2.2.2 and
5.7.1.2, excepting that the shared secret is returned directly from the ECDH process
and not put through a key derivation function. Key agreement also uses curve P-256

24

(i.e. 256 bit private and public keys), per section D.1.2.3 of NIST FIPS 186-4 Digital
Signature Standard (DSS). This function is made available in the Application API as
STZ_generateSharedSecret.

This is tested by verifying that if the Application API STZ_generateSharedSecret is
called with an ephemeral ECC NIST P-256 public key and an index to an ECC NIST P-
256 private key as arguments, an ephemeral 256b secret is returned.

25

4 Mapping and sufficiency rationales

4.1 SESIP1 sufficiency

Assurance Class Assurance Families Covered by Rationale

ASE: Security Target
evaluation

ASE_INT.1 ST Introduction Section
“Introduction”
and “Title”

The ST
reference is in
the Title, the
TOE reference in
the “Platform
reference”, the
TOE overview
and description
in “Platform
functional
overview and
description”.

ASE_OBJ.1 Security
requirements for the
operational environment

Section “Security
Objectives for
the operational
environment”

The objectives
for the
operational
environment in
“Security
Objectives for
the operational
environment”
refers to the
guidance
documents.

ASE_REQ.3 Listed Security
requirements

Section “

Security
Functional
Requirements”.

All SFRs in this
ST are taken
from [SESIP].

“Identification
of platform
type” is
included.

Exclusion of
“Secure update
of platform” is
addressed in
section” Flaw
Reporting
Procedure
(ALC_FLR.2)”

ASE_TSS.1 TOE Summary
Specification

Section “Security
requirements

All SFRs are
listed per
definition, and

26

and
implementation”

for each SFR the
implementation
and verification
is defined in

Security
Functional
Requirements.

ALC: Life-cycle
support

ALC_FLR.2 Flaw reporting
procedures

Section “Flaw
Reporting
Procedure
(ALC_FLR.2)”

The flaw
reporting and
remediation
procedure is
described.

AVA_VAN.1 AVA_VAN.1 Vulnerability
survey

Section
“Vulnerability
Survey
(AVA_VAN.1)”

The vulnerability
survey and
associated test
results are
described.

27

5 References

[SESIP] Security Evaluation Scheme for IoT Platforms, version 1.3
[AM] Application of Attack Potential to Smartcards and Similar Devices , version 3.0
[TJERAND] Comparative Study of ECC Libraries for Embedded Devices, Tjerand S,

COSADE 2019

