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1 Introduction 

The Security Target describes the Platform (in this chapter) and the exact security properties 
of the Platform that are evaluated under [SESIP] (in chapter “Security requirements and 
implementation”) and that a potential consumer can rely upon the product upholding if 
they fulfill the objectives for the environment (in chapter “Security Objectives for the 
operational environment”). 
 
SESIP v1.3 is used in this document. 

1.1 ST reference 

See title page. 

1.2 Platform reference 

TOE name Secure Thingz Secure Boot Manager 

TOE version 1.30 

TOE identification 1.30 

TOE Type Secure bootloader for microcontrollers used in IoT applications 

 

1.3 Included guidance documents 

The following documents are included with the platform: 

Reference Name Version 

[Manual] Embedded Trust User Guide 2 

 

1.4 Platform functional overview and description 

The Target of Evaluation (TOE) consists of a bootloader for microcontrollers (MCUs) called 
the Secure Boot Manager (SBM).  

The TOE is intended to be used by an embedded C developer who integrates it into an 
Internet of Things (IoT) Product, along with an IoT Application and other parts of an IoT 
Platform.  

In SESIP terms, the TOE is a component of the IoT Platform. The TOE scope is depicted in  
Figure 1. The blue block is within the evaluated scope and the grey blocks are outside of the 
evaluated scope. Out of scope are the IoT Application, the other components of the IoT 
Platform including the RTOS and the microcontroller, the integrated development 
environment (IDE) used to configure and build the TOE, and the programming system used 
to provision the TOE onto the microcontroller. 
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Figure 1 TOE scope (in blue) in terms of SESIP 

The TOE is a specialised application that is run when the microcontroller starts, before the 
user application, to which it provides several security benefits. The main security features of 
the TOE are as follows: 

• Configuration of hardware security features. The TOE ensures that hardware 
security features of each supported microcontroller are used effectively, for example 
to write-protect the TOE, set debug lock features, store unique device keys, and set 
lifecycle states.  

• Provisionable key store. The TOE accesses a data structure in Flash memory called 
the Provisioned Data Block (PDB). This data structure includes device private keys, 
and trust anchor certificates, as specified by the composite developer. The PDB is 
created, personalised and programmed onto each device by a compatible 
provisioning system in the factory, providing each device with a unique 
cryptographic identity. Where suitable hardware features are available the TOE sets 
access permissions so that data in the PDB cannot be modified by the user 
application, before passing control to that application. Where hardware features for 
secure key generation and storage such as a PUF or silicon root of trust (ROT) are 
provided, device secret keys are generated and stored there instead of in the PDB.  

• Anti-cloning. Multiple features protect firmware from being cloned onto other 
devices. Excepting during development, the TOE permanently activates debug lock 
features of the host microcontroller to prevent external readout or modification of 
the internal firmware. The device hardware ID is used to seed a hash of the 
provisioned data that is included in the TOE at provisioning time, allowing the TOE to 
verify that it is not running on a cloned device. The device hardware ID can also be 
incorporated into device identity certificates included in the provisioned data, 
allowing the user application to verify that it is not running on a cloned device.  

• Secure boot. The TOE receives the program pointer immediately on device reset. 
The TOE checks that a signature over the main application image is present and 
validates it against a trust anchor stored in the PDB, proving the authenticity of the 
main application image. Finally, the TOE passes the program pointer to the user 
application. Using microcontroller-specific features, the TOE write-protects itself to 
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ensure that a compromised user application cannot persist itself by also 
compromising the trusted bootloader.  

• Firmware update. The TOE includes an installer, which determines whether a more 
recent valid user application image is available, and if so, installs that before 
executing it. New images must be linked for a predetermined location in memory 
known as the active slot, packaged with version metadata, signed by a party trusted 
by the TOE, distributed to target devices, and stored in a predetermined location in 
memory known as the update slot by another process, usually the user application. 
The active slot is always located in internal Flash memory in execute-in-place (XIP) 
devices, aligned on erase sectors. The update slot can be located in internal Flash 
memory, also aligned on erase sectors, or it can be in external serial Flash. By having 
the installer copy new images into a fixed location before executing them, reliance 
on position-independent code (PIC), runtime linking, multiple versions of images 
linked for different locations, or knowledge of slot state outside of the IoT device is 
avoided. Rollbacks can be accomplished only by repackaging an older image with a 
newer version number and distributing that for installation.  

The TOE is located at the reset vector of the microcontroller (see Figure 2) so that on start it 
can perform a sequence of operations before passing control to the user application.  

 

Figure 2 Example flash memory layout of MCU devices using the TOE (the SBM bootloader). 

While the TOE must be located at the reset vector, the location of other slots is 
configurable, subject to hardware constraints and the SBM features enabled by the 
developer: 

• The update slot may be located in external Flash.  
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• The user application is always located in internal Flash in the active slot and must be 
linked for that location.  

• The Installed Update Header slot is used by the TOE to store metadata received with 
the user application image, including version information and a signature.  

• All slots in internal Flash are aligned on Flash erase sectors so that they and/or their 
neighboring slots can be independently updated.  

Knowledge of the memory map is built into the TOE. The TOE makes use of a default 
memory map and other hardware-specific features for each supported microcontroller. 
Supported microcontrollers are listed in Table 1. 

Vendor MCU family MCU variant  
(excluding package variants) 

Microchip SAML11 SAML11E16A 

NXP K65 MK65FN2M0VMI18 

NXP K66 MK66FN2M0VMD18 

Renesas RX65N R5F565NEHDFC 

ST STM32F412 STM32F412ZGT6  

ST STM32F777 STM32F777ZIT6 

ST STM32L4S5 STM32L4S5ZIT6  

ST STM32F405 STM32F405VGT6 

ST STM32F407 STM32F407VG 

ST STM32H7 STM32H753XI 

ST STM32H7 STM32H753ZI 

ST STM32L4 STM32L475VG 

Table 1 Supported microcontrollers 

The TOE is provided to embedded developers as C source code in an IAR Embedded 
Workbench (a popular IDE) project that is generated by an IDE plugin called Embedded 
Trust. The project includes all source code plus configuration files for the selected 
microcontroller. This allows the TOE source code to be inspected as part of any security 
audit. 

IAR Embedded Workbench and the Embedded Trust plugin are distributed in Windows 
installers downloadable from https://iar.com. Once installed, the Embedded Trust release 
notes and user guide and example projects are accessible directly via the Help menu. 
Example projects are accessible via Help / Information Centre / Example Projects / 
Embedded Trust / Getting Started. A whitepaper “Getting started with IoT security” is 
accessible via Help / Information Centre / Integrated solutions / Additional downloads and 
support files. 

When the IDE builds the TOE project, the Embedded Trust plugin also creates a set of 
instructions for a factory provisioning system provided as another component of the 
Embedded Trust product, describing how the PDB is to be constructed and programmed 
onto each device along with the built TOE image. The PDB in each device contains a unique 
secret identity key, identity certificate chain, and firmware trust anchors. Developers can 
configure the identity certificate chain and other details of the provisioning process in the 
graphical user interface (GUI) when creating a new bootloader project.  

https://iar.com/
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The workflow for preparing and provisioning the TOE onto microcontrollers in IoT devices is 
summarized in Figure 3. 

 

Figure 3: Overview of how the TOE is prepared, and provisioned onto microcontrollers 

Several optional developer-specific or board-specific functions in the TOE are provided in 
the source code, where they are called at specific points in the start-up sequence. These 
functions are called “OEM API functions” and must be implemented by the  

developer. Developers are instructed not to modify bootloader code or behavior outside of 
these functions because doing so will lead to unsupported behavior.  

The OEM API functions provide log outputs that can be routed to a serial line or a log file, a 
handler for boot failures, and a tamper-detection handler. By default, they are disabled. 
They are enabled by setting conditional compilation flags in the TOE source code – flags 
which are in turn set by options selected in the IDE by the developer when creating the 
bootloader project.  These selections also set a number of other conditional compilation 
flags that can be used to disable certain features of the TOE for convenience during 
development. 

Developers create a separate project for the user application, where they have a free hand. 
The TOE exposes a set of APIs called the “Application APIs” to the user application as 
wrapper functions in a library provided for inclusion in that application. The wrapper 
functions map arguments into and results out of buffers whose addresses and sizes are 
passed into a function in the TOE called the SBM Access Method, a pointer to which is 
located at a fixed memory location in the TOE, set using #defines in both the TOE (the 
bootloader) and the user application C code. These Application APIs expose functions for: 

• Signing, validation and key derivation 

• Checking the contents of the update slot and initiating an update 

• Checking the metadata of the installed application 

• Checking the status of PDB slots  

• Retrieving certificates from the PDB 

• Checking the version of the TOE 

When the Embedded Workbench IDE builds the user application the Embedded Trust plugin 
packages the resulting binary image in a structure called a software update (SWUP) file. The 
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SWUP includes metadata about the package’s image including its version number, a 
signature created using the developer’s secret firmware signing key, and information 
allowing the target devices to decrypt the firmware image.  

The TOE installer will install only valid SWUPs found in the update slot. SWUPs may be 
delivered into the update slot over the air to deployed IoT devices via a running previous 
version of the user application or programmed directly into the update slot on the 
production line in the factory at the same time as the TOE is provisioned. 
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2 Security Objectives for the operational environment 

In order for the platform to fulfill its security requirements, the operational environment 
(technical or procedural) must fulfil the following objectives. 
 

• Only authorized and trustworthy personnel should have access to the TOE 
development environment (as described in [Manual] section “Mastering”). 
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3 Security requirements and implementation 
3.1 Security Assurance Requirements 

The claimed assurance requirements package is: SESIP1 as defined in [SESIP].  

3.1.1 Flaw Reporting Procedure (ALC_FLR.2) 

In accordance with the requirement for a flaw reporting procedure (ALC_FLR.2), including a 
process to give generate any needed update and distribute it, the developer has defined the 
following procedure: 
 
Flaws can be reported by email at securityalert@securethingz.com or by web form at 
https://www.securethingz.com/contact/ . These channels are monitored by the 
SecureThingz customer service team. Bug reports including security flaws are passed to the 
Embedded Trust development team. A fix is developed and merged into the current release 
candidate version of the TOE, where it forms part of the next release of the Embedded Trust 
product, of which the TOE is a part. Embedded Trust releases are typically several months 
apart. For severe issues an updated version of the current release is made available as soon 
as the fix is available. 
 
Customers are notified by email when new releases of Embedded Trust are made. Known 
issues and new fixes are described in the release notes of each release. The reporter of the 
issue is updated on progress via IAR customer support.  
 
When new releases of the TOE are made customers can update their factory production 
lines to provision the newer release onto newly manufactured IoT devices. They cannot 
update the TOE on devices that have already been provisioned with a previous version, for 
two reasons: 
 

1. As a bootloader, a function of the TOE is to verify and install updated user 
application images. It cannot update itself, because in a XIP microcontroller that 
would require replacing the code it is currently executing – something that cannot 
be accomplished reliably.  

2. As a keystore, a function of the TOE is to provide the host device with an immutable 
identity, which by definition must not change. On microcontrollers where the root 
identity secrets are stored as part of the TOE, the TOE cannot be updated without 
issuing a new identity to the device. 

 
To minimize the risk of serious security flaws in the TOE leading to compromise of the IoT 
device, its codebase is kept as small and stable as possible. 

3.1.2 Vulnerability Survey (AVA_VAN.1) 

AVA_VAN.1 requires that the TOE demonstrate an attack potential rating of at least 16. We 
do so in two steps. First, we review known vulnerabilities in the TOE and its components. 
Second, we systematically review potential attacks on the TOE. At each step, we show that 
no attacks with attack potential less than 16 can be identified. 

mailto:securityalert@securethingz.com
https://www.securethingz.com/contact/
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3.1.2.1 Survey of known vulnerabilities 

Table 2 lists software components used in the TOE, including third-party libraries. Details of 
each are provided, including how vulnerability notices are monitored. 
 

Name of  
software 
component 

Version Supports specific 
microcontrollers
? 

Maintainer Where is it 
obtained? 

How are 
announcements 
and new 
releases 
monitored? 

Secure Boot 
Manager  

1.30 See Table 1 Secure Thingz https://www.iar.co
m/embedded_trust
/ 

We invite 
vulnerability 
reports directly, per 
section 3.1.1  Flaw 
Reporting 
Procedure 
(ALC_FLR.2), and 
monitor public 
channels including 
https://cve.mitre.o
rg/cve/  

microecc 1.0 (commit  
3345d50) 

n/a Ken MacKay https://github.com
/kmackay/micro-
ecc  

We are notified of 
new releases by 
GitHub and 
monitor them for 
vulnerability 
announcements 

SHA256 RFC4634 n/a IETF https://datatracker
.ietf.org/doc/rfc463
4/  

We monitor IETF -
Announce mailing 
list for vulnerability 
announcements 
about draft-
eastlake-sha2 or 
draft-eastlake-
sha2b 

libtomcrypt 1.17 n/a libtom team https://github.com
/libtom/libtomcryp
t 

We are notified of 
new releases by 
GitHub and 
monitor them for 
vulnerability 
announcements 

jansson 2.12 n/a Petri Lehtinen https://github.com
/akheron/jansson  

We monitor 
https://groups.goo
gle.com/forum/#!f
orum/jansson-
users and new 
releases on GitHub 
for vulnerability 
announcements. 

Atmel SAML11 
Series Device 
Support 

1.0.109 SAML11E16A Microchip http://packs.downl
oad.atmel.com/ 

We subscribe to 
Microchip PCNs for 
SAML11 at  
https://www.micro
chip.com/pcn  

MCUXpresso 
SDK for Kinetis 
Freedom K66F 

2.50 MK65FN2M0VMI
18, 
MK66FN2M0VM
D18 

NXP https://mcuxpresso
.nxp.com/en/welco
me 

We subscribe to 
product 
announcements 
from NXP and 
monitor NXP user 
forums at 
https://community.
nxp.com/communit
y/mcuxpresso/mcu
xpresso-sdk for 
vulnerability 
announcements 

https://www.iar.com/embedded_trust/
https://www.iar.com/embedded_trust/
https://www.iar.com/embedded_trust/
https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://datatracker.ietf.org/doc/rfc4634/
https://datatracker.ietf.org/doc/rfc4634/
https://datatracker.ietf.org/doc/rfc4634/
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://github.com/libtom/libtomcrypt
https://github.com/akheron/jansson
https://github.com/akheron/jansson
http://packs.download.atmel.com/
http://packs.download.atmel.com/
https://www.microchip.com/pcn
https://www.microchip.com/pcn
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
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Name of  
software 
component 

Version Supports specific 
microcontrollers
? 

Maintainer Where is it 
obtained? 

How are 
announcements 
and new 
releases 
monitored? 

STM32CubeF7 1.15.0 STM32F777ZIT6 ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
ef7.html 

We subscribe to 
product 
announcements 
from ST and 
monitor ST user 
forums at 
https://community.
st.com/ for 
vulnerability 
announcements. 

STM32CubeF4 1.24 STM32F405VGT6
, STM32F407VG, 
STM32F412ZGT6 

ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
ef4.html 

We subscribe to 
product 
announcements 
from ST and 
monitor ST user 
forums at 
https://community.
st.com/ for 
vulnerability 
announcements. 

STM32CubeL4 1.14.0 STM32L4S5ZIT6 ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
el4.html  

We subscribe to 
product 
announcements 
from ST and 
monitor ST user 
forums at 
https://community.
st.com/ for 
vulnerability 
announcements. 

STM32CubeH7 1.50 STM32H753XI, 
STM32H753ZI 

ST Micro https://www.st.co
m/en/embedded-
software/stm32cub
eh7.html 

We subscribe to 
product 
announcements 
from ST and 
monitor ST user 
forums at 
https://community.
st.com/ for 
vulnerability 
announcements. 

Trusted Secure 
IP Driver 

1.05 R5F565NEHDFC Renesas https://www.renes
as.com/eu/en/prod
ucts/software-
tools/software-os-
middleware-
driver/security-
crypto/trusted-
secure-ip-
driver.html  

Renesas account 
managers contact 
us with any 
vulnerability 
announcements. 

 
RX Family RX 
Driver Package 

1.13 R5F565NEHDFC Renesas https://www.renes
as.com/eu/en/prod
ucts/software-
tools/software-os-
middleware-
driver/software-
package/rx-driver-
package.html 

We subscribe to 
product 
announcements 
through Renesas 
MyPages and 
https://www.renes
as.com/us/en/supp
ort/pcnsearch.html 
and monitor them 
for security 
vulnerabilities. 

Table 2 First- and third-party software used in the TOE, and associated channels which are monitored for 
security vulnerability announcements. 

https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef7.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://www.st.com/en/embedded-software/stm32cubef4.html
https://community.st.com/
https://community.st.com/
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://www.st.com/en/embedded-software/stm32cubel4.html
https://community.st.com/
https://community.st.com/
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
https://community.st.com/
https://community.st.com/
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/security-crypto/trusted-secure-ip-driver.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/eu/en/products/software-tools/software-os-middleware-driver/software-package/rx-driver-package.html
https://www.renesas.com/us/en/support/pcnsearch.html
https://www.renesas.com/us/en/support/pcnsearch.html
https://www.renesas.com/us/en/support/pcnsearch.html
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A search of the public Common Vulnerabilities and Exposures1 (CVE) database for known 
vulnerabilities in these components shows that no applicable vulnerabilities have been 
reported.  
 
Two CVEs do exist against libtomcrypt 1.17 but are not applicable to the TOE: 

i) CVE-2019-17362 reports a vulnerability in the der_decode_utf8_string function. 
This function is not present in the TOE. 

ii) CVE-2018-12437 reports that under certain conditions a vulnerability exists in 
the ECDSA signature function. The applicable conditions are execution of 
libtomcrypt at the same time as attacker code on a microprocessor with memory 
caches. The TOE is deployed only in MCU-based systems that do not feature 
memory caches. 

3.1.2.2 Survey of potential vulnerabilities 

This survey uses the method of attack trees2 to develop a tree of possible attack chains on 
the TOE, using information about its design and implementation. Well-known methods of 
attacking secure embedded systems have been considered at each node in the attack tree. 
Where appropriate they have been identified as potential attacks. The document [AM] 
provides an enumeration of well-known methods of attack.  
  
Note that the survey considers only attacks on the TOE. Attacks on a composite system may 
be able to proceed to the attackers’ goals by other means.  
 
Attack trees are constructed by working backwards from the attackers’ goals: 
 
Goal A: Extract software IP  
A1. Modify the TOE so that it does not disable debug interfaces on first boot 

A.1.1. Alter TOE in supply chain or on-chip before first boot 
A2. Extract firmware decryption group private key 

A.2.1. Probe or image internal Flash memory to obtain firmware decryption key 
A.2.2. Use simple power analysis (SPA) / differential power analysis (DPA) during 

firmware decryption operations 
A.2.3. Use higher-order DPA during firmware decryption operations 
A.2.4. Use electromagnetic emissions analysis (EMA) during firmware decryption 

operations 
A.2.5. Use fault analysis (FA) during firmware decryption operations 

A3. Exploit bugs or undocumented features in the TOE to externally influence it during boot 
to expose firmware decryption group private key or proprietary firmware 

A4. Exploit factory test modes to access provisioned data 
 
Goal B: Take over a device (execute attacker's software) 
B1. Have TOE boot malware placed in the active slot 

B.1.1. [AND] Re-enable debug access 
B.1.1.1. Inject faults to re-enable debug access 

 
1 https://cve.mitre.org/cve/search_cve_list.html 
2 https://www.schneier.com/academic/archives/1999/12/attack_trees.html 

https://cve.mitre.org/cve/search_cve_list.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
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B.1.1.2. Exploit bugs or undocumented features in the TOE to externally influence it 
during boot to re-enable debug access 

B.1.2. [AND] Disable TOE validation of the active application during boot 
B.1.2.1. Inject faults to disable validation of the active application during boot  
B.1.2.2. Modify the running user application to write changes to the installed TOE 

B.1.2.2.1. Provoke a buffer overflow in the user application to execute specially 
crafted code to write changes to the TOE  

B.1.2.2.2. Compromise unvalidated software loaded outside the validated boot 
chain to write changes to the TOE  

B.1.2.3. Modify the running TOE to write changes to its own code 
B.1.2.3.1. Send a malformed SWUP to cause undocumented behaviour in the TOE 

such that the attacker can execute code to write changes to the TOE 
B.1.2.4. Probe the TOE in internal Flash to write changes to its code 
B.1.2.5. See [Alter TOE in supply chain or on-chip before first boot] 
B.1.2.6. Exploit bugs or undocumented features in the TOE to circumvent validation of 

the user application at boot 
B2. Have TOE install invalid SWUP containing malware 

B.2.1. [AND] Inject faults during authentication of invalid SWUP  
B.2.2. [AND] Deliver invalid SWUP to target device  

B3. Have TOE install stale but validly signed SWUPs containing old firmware with known 
vulnerabilities  

 
Goal C: Masquerade as an authentic device 
C1. Exfiltrate device’s private identity key using attacker's software 

C.1.1. See [Take over the device (execute attacker's software)] 
C.1.2. Provoke a buffer overflow in the user application to execute specially crafted code 

to exfiltrate the device identity key 
C2. Use simple SPA/DPA during elliptic curve digital signal algorithm (ECDSA) signature 

operations to obtain device identity key 
C3. Use higher-order DPA during ECDSA signature operations to obtain device identity key 
C4. Use EMA during ECDSA signature operations to obtain device identity key 
C5. Modify random number generator (RNG) behaviour during ECDSA operations to obtain 

device identity key 
C6. Probe or image the device private key in internal Flash memory 
C7. Exploit bugs or undocumented features in the TOE to cause it to expose device's private 

key externally during boot 
C8. See [Exploit factory test modes to access provisioned data] 
C9. Use FA during ECDSA signature operations to obtain device identity key 
 
Goal D: Manufacture counterfeit devices 
D1. Install firmware image on unauthorised devices 

D.1.1. [AND] See [Extract software IP] 
D.1.2. [AND] Run software on unauthorized devices 

 
Goal E: Remotely disable a deployed device  
E1. Send a malformed SWUP such that the TOE installs a non-functional user application 

E.1.1.  See [Take over the device (execute attacker's software)] 
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E2. Modify the TOE to always invalidate the active and update slots 
E.2.1. See [Modify the running user application to write changes to the installed TOE] 

and [Modify the running TOE to write changes to its own code] 

 
Leaf nodes in the attack tree describe attacks on the TOE. Next, we discuss the feasibility of 
these attacks. 
 

Attack Feasibility 

A.1.1. Alter TOE in supply 
chain or on-chip before first 
boot 

Supply-chain security is out of scope of the TOE.  

Users are advised to ensure they have an authentic copy 
of IAR Embedded Workbench with Embedded Trust 
plugin, and to employ a secure provisioning system to 
deliver their project from development onto devices.  

Users are advised to ensure the security of provisioned 
information on-chip before first boot by operating a 
secure production environment, by utilizing a secure 
firmware programming interface (where available), 
and/or by disabling the debug interface using the 
programmer immediately after initial programming. 

A.2.1. Probe or image 
internal Flash memory to 
obtain firmware decryption 
key 

B.1.2.4. Probe the TOE in 
internal Flash to write 
changes to its code 

C6. Probe or image the device 
private key in internal Flash 
memory 

 

Resistance to probing attacks is in a feature of the 
microcontroller platform and out of scope of the TOE. 

On devices, boards or microcontrollers fitted with 
latching tamper detection circuits, the tamper detection 
state line can be checked at each boot by the OEM API 
function oem_return_to_provisioned_state_now, which 
will cause the TOE to erase the active and update slots if 
evaluated to true. The composite designer must 
implement or specify a tamper detection mesh to use 
this feature.  

A.2.2. Use simple SPA/DPA 
during firmware decryption 
operations 

A.2.3. Use higher-order DPA 
during firmware decryption 
operations 

 

An attacker with the ability to have the TOE decrypt 
SWUPs while monitoring power or emissions side 
channels may attempt to extract the firmware 
decryption group private key, hence the ephemeral 
symmetric firmware encryption key, and thus the 
software IP. The TOE employs a crypto library (micro-
ecc) that implements anti-SPA/DPA measures to 
frustrate this. These measures are detailed in 
[TJERAND].  

Further, the TOE severely restricts the number of 
operations an attacker can trace by checking that new 
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SWUPs are validly signed and declare a higher software 
version number, before decrypting them. 

A.2.4. Use EMA during 
firmware decryption 
operations 

C4. Use EMA during ECDSA 
signature operations to obtain 
device identity key 

Electromagnetic emissions may leak information, at 
whole-chip or die level. The TOE is not designed with a 
design goal of preventing information leakage through 
near-field or far-field electromagnetic emissions, and 
other than by minimizing the use of private keys 
provides no protection against attacks utilizing such 
side-channels. 

The TOE effectively limits the number of usages of the 
firmware decryption group private key by checking that 
new SWUPs are validly signed and declare a higher 
software version number, before decrypting them.  

The device identity key is used to encrypt a random hash 
challenge during each transport layer security (TLS) 
protocol handshake. An attacker with physical access 
can attempt an EMA side-channel analysis on it by 
stimulating multiple TLS connections. The TOE does not 
limit the rate of TLS connections, but the composite 
designer may be able to do so at system design level. 

To frustrate EMA attacks more completely users must 
rely on other parts of the platform, in particular the 
MCU hardware, and on device-level design features 
such as cans, potting and tamper meshes.  

EMA attacks, especially at die level, require expertise 
and equipment that at attack rating 22 puts them 
beyond the reach of a basic attack potential: 
 

 Identification 
phase 

Exploitation 
phase 

Elapsed time <1 week 2 <1 day 3 

Expertise Expert 5 Expert 4 

Knowledge of 
the TOE 

Public 0 Public 0 

Access to the 
TOE 

<10 
samples 

0 
<10 

samples 
0 

Equipment Specialised 3 Specialised 4 

Open samples Public 0 Public 0 

PHASE TOTALS  10  11 

ATTACK 
RATING 

21 

A.2.5. Use FA during firmware 
decryption operations 

C9. Use FA during ECDSA 
signature operations to obtain 
device identity key 

 

A specialization of fault injection attacks, FA attacks seek 
to inject bit errors into cryptographic operations in 
tamper-proof microcontrollers, in such a way as to leak 
data about secret keys.  

This kind of attack requires expertise and equipment 
beyond the reach of a basic attack potential: 
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 Identification 

phase 

Exploitation 

phase 

Elapsed time <1 week 2 <1 day 3 

Expertise Expert 5 Expert 4 

Knowledge of 
the TOE 

Public 0 Public 0 

Access to the 
TOE 

<10 
samples 

0 
<10 

samples 
0 

Equipment Specialised 3 Specialised 4 

Open samples Public 0 Public 0 

PHASE TOTALS  10  11 

ATTACK 
RATING 

21 

A3. Exploit bugs or 
undocumented features in the 
TOE to externally influence it 
during boot to expose 
firmware decryption group 
private key or proprietary 
firmware 

The only external input the TOE should accept during 
boot is a SWUP stored in external memory. That SWUP 
is authenticated before use. Correct and robust behavior 
in processing that SWUP is ensured using good 
development practices. 

A4. Exploit factory test modes 
to access provisioned data 

No factory test modes are implemented in the TOE. 

Factory test modes implemented in the user application 
have the same access to secret material as the user 
application, potentially approaching equivalence to full 
debug access. Implementors of such modes must take 
care to permanently disable them before deployment, 
or else ensure they do not expose secret material. 

B.1.1.1. Inject faults to re-
enable debug access 

B.1.1.2. Exploit bugs or 
undocumented features in the 
TOE to externally influence it 
during boot to re-enable 
debug access 

The TOE irreversibly disables debug and programming 
interfaces, preventing attackers with physical access to a 
target MCU’s debug ports from obtaining provisioned 
data, user data, or software IP. Irreversible debug 
lockdown is a required feature on all microcontrollers 
supported by the TOE. Once set, no software attack can 
reverse it.  

The resistance of the MCU’s debug lock feature to fault 
injection attacks is out of scope of the TOE.  

B.1.2.1. Inject faults to disable 
validation of the active 
application during boot  

B.2.1. [AND] Inject faults 
during authentication of 
invalid SWUP 

An attacker may inject faults during TOE execution by 
means of clock or voltage glitches. By causing execution 
to skip instructions, this technique can be used to 
bypass validations to, for example, install untrusted 
code, or to change lifecycle state. It can also be used to 
weaken cryptographic functions, potentially allowing 
the extraction of private keys.  

This kind of attack requires expertise and equipment 
that at attack rating 22 puts it beyond the reach of a 
basic attack potential: 
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 Identification 

phase 

Exploitation 

phase 

Elapsed time <1 week 2 <1 day 3 

Expertise Expert 5 Expert 4 

Knowledge of 
the TOE 

Public 0 Public 0 

Access to the 
TOE 

<10 
samples 

0 
<10 

samples 
0 

Equipment Specialised 3 Specialised 4 

Open samples Public 0 Public 0 

PHASE TOTALS  10  11 

ATTACK 
RATING 

21 

B.1.2.2.2. Provoke a buffer 
overflow in the user 
application to execute 
specially crafted code to write 
changes to the TOE  

C.1.2. Provoke a buffer 
overflow in the user 
application to execute 
specially crafted code to 
exfiltrate the device identity 
key 

 

A corrupted user application may try to enable malware 
to become permanently resident on the device by 
disabling boot-time validation of the user application by 
the TOE. To prevent modification by a corrupted user 
application, the TOE must be protected from internal 
write operations.   

Use can be made of an immutable first-stage bootloader 
in ROM if available. This must be capable of calculating a 
hash over the TOE and verifying it is the same as an 
immutably stored hash, or the same as that obtained by 
decrypting a signature over the TOE using an immutably-
stored public key. 

Use can also be made of write-protection features 
provided by the MCU. The TOE automatically write-
protects itself on first boot on all supported ST 
microcontrollers, with the sole exception of the SAM-
L11 where it is expected that the composite developer 
will isolate user applications using TrustZone-M trusted 
execution environment (TEE) technology. 

This is an example of a third option to protect device 
secrets from corrupt user applications: using application 
isolation mechanisms. MCUs are available with a range 
of isolation mechanisms, from none, through OSes 
exploiting privileged modes and memory protection 
units, to integrated secure elements and TEE 
partitioning with trusted supervisory firmware. It is up 
to the composite developer to configure their chosen 
isolation mechanism to prevent writes to the TOE Flash 
and direct reads of provisioned data by user applications. 

If none of these options is available, composite 
developers rely on attackers being unable to find ways 
to compromise running software on target devices. 
Executing buffer overflow attacks on Harvard 
architecture execute-from-flash MCUs is a difficult task 
that as well as a suitable buffer overflow vulnerability 
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requires knowledge of at least the firmware binary 
image and ideally the source code, where a Flash write 
function must be available. Confidence in this approach 
can be increased using firewalls and robust API testing. 

B.1.2.2.1. Compromise 
unvalidated software loaded 
outside the validated boot 
chain to write changes to the 
TOE  

Although the TOE validates the next application in the 
boot sequence, nothing in the TOE prevents that 
application from loading further applications, potentially 
including untrusted applications. Composite developers 
must take care to write-protect the TOE, employ an 
immutable ROM bootloader, or apply appropriate 
application isolation techniques in such situations. 

B.1.2.3.1. Send a malformed 
SWUP to cause 
undocumented behaviour in 
the TOE such that the attacker 
can execute code to write 
changes to the TOE 

An attacker may try to compromise the TOE directly by 
sending a malformed SWUP.  

The SBM validates each SWUP’s signature before doing 
any further processing, so an attacker would have to 
compromise the composite developers’ firmware 
repository, firmware signing key or firmware signing 
procedures to attempt this. This is outside the scope of 
the TOE.  

B.1.2.6. Exploit bugs or 
undocumented features in the 
TOE to circumvent validation 
of the user application at boot 

The TOE should always validate the user application at 
boot. Its correct and robust behavior is ensured using 
good development practices. 

B.2.2. [AND] Deliver invalid 
SWUP to target device 

The TOE can process new SWUPs placed in internal or 
external Flash memory. SWUPs are expected to be 
delivered via external processes. Because the TOE 
validates the integrity, freshness and authenticity of 
each SWUP those processes are not required to be 
secure. For instance, new SWUPs could be placed on a 
removable SD card. Nevertheless, use of secure 
channels to deliver SWUPs does no harm and further 
reduces opportunities for attack.  

B3. Have TOE install stale but 
validly signed SWUPs 
containing old firmware with 
known vulnerabilities  

Downgrade attacks where a validly signed but old SWUP 
with known vulnerabilities is delivered to target devices 
to enable further attacks are prevented by having the 
TOE check that new SWUPs declare higher application 
version number than the currently-installed SWUP 
before installing them. 

C2. Use simple SPA/DPA 
during ECDSA signature 
operations to obtain device 
identity key 

C3. Use higher-order DPA 
during ECDSA signature 

A device’s identity key is used to encrypt a random hash 
challenge during each TLS handshake, so an attacker 
with physical access can attempt a side-channel analysis 
on it by stimulating one or more TLS connections. The 
TOE employs a crypto library (micro-ecc) that 
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operations to obtain device 
identity key 

implements anti-SPA/DPA measures to frustrate this. 
These measures are detailed in [TJERAND]. 

 

C5. Modify RNG behaviour 
during ECDSA operations to 
obtain device identity key 

 

High quality random numbers are essential to many 
cryptographic operations. The only such operation 
implemented in the TOE is ECDSA signature. An attacker 
in possession of an ECDSA signature and the random 
number used in its creation can recover the device’s 
secret identity key. Thus, the randomness of the RNG is 
critical. As part of the physical MCU platform the RNG is 
outside the scope of the TOE, but all MCUs supported by 
the TOE are equipped with high-quality RNGs, whose 
behaviour is not trivial to alter while retaining other 
MCU functionality.  

C7. Exploit bugs or 
undocumented features in the 
TOE to cause it to expose 
device's private key externally 
during boot 

The TOE contains no functions that expose devices’ 
private keys, internally or externally. Its correct and 
robust behavior is ensured using good development 
practices. 

D.1.2. [AND] Run software on 
unauthorized devices 

The TOE performs a check at boot time, that the 
provisioned data includes a hash seeded with the device 
hardware ID. A firmware image that has been extracted 
from an authentic device, for example by sniffing it from 
a serial programming line in the factory, will fail this 
check on any other device and the TOE will terminate. A 
counterfeiter would have to reverse-engineer and 
modify the firmware image to disable this check.  

If the counterfeit devices are to connect to a genuine 
web service, a further check can be implemented at the 
genuine web service that the device certificates are 
valid. This is however outside the scope of the TOE. 

 
The following security practices are employed in development of the TOE: 
 

1. Traceability. Code commits are linked back to requirements management. This helps 
ensure only documented features enter the codebase. 

2. Code review. All code commits undergo review for quality and function before 
merging. This helps prevent bugs or undocumented features from entering the 
codebase. 

3. Unit testing. All functions are subject to unit tests that run automatically on each 
merge request. Unit tests are themselves subject to code review, including by 
dedicated testers, for thoroughness. Unit tests include valid and invalid inputs. This 
helps ensure robust and stable behaviour. 
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4. API testing. All application and OEM APIs are subject to API tests including 
malformed requests that run automatically on each merge request. API tests are 
themselves subject to code review, including by dedicated testers, for thoroughness. 
This helps ensure robust and stable API behaviour. 

 

3.2 Security Functional Requirements 

The platform fulfils the following security functional requirements: 

3.2.1 Identification of platform type 

The platform provides a unique identification of the platform type, including all its parts and 
their versions.  

Self-assessment: 

1. The developer can identify the version of the TOE they are working with in the IAR 
Embedded Workbench IDE, where the Embedded Trust plugin in adds an “Embedded 
Trust Release Notes” option to the “Help” menu. Selecting the option shows the release 
notes in the system web browser. The release notes identify the installed version of the 
Embedded Trust plugin. Embedded Trust uses semantic versioning. The TOE is versioned 
along with the Embedded Trust plugin. 
 
This is tested by selecting the “Embedded Trust Release Notes” option in the “Help” 
menu in IAR Embedded Workbench, and verifying that the system web browser loads 
release notes including the correct Embedded Trust version number.  

2. The user application can identify the version of the TOE installed using the Application 
API STZ_getSBMInformation. This API returns the version number of the TOE. This 
version number is optionally defined by the developer by setting the conditional 
compilation flag SBM_REPORT_SBM_VERSION and defining the string SBM_VERSION_ID. 
The developer is given control of this to allow them to increment the version number for 
their bootloader project when they change their implementation of functions called by 
the OEM APIs. To keep track of which version of the TOE is installed on which IoT 
devices, the developer must keep production records showing what version of the TOE 
was installed onto each device. Alternatively they can have connected devices report 
SBM-VERSION_ID to a central service, and maintain a separate record of which version 
of the TOE is associated with each SBM_VERSION_ID. 
 
This is tested by enabling SBM_REPORT_SBM_VERSION and defining SBM_VERSION_ID 
and verifying that this produces a TOE build that reports the correct version number to 
the user application via the STZ_getSBMInformation API.  

3.2.2 Secure update of platform 

The platform can be updated to a newer version in the field such that the integrity, 
authenticity and confidentiality of the platform is maintained. 
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3.2.3 Identification of individual platform 

The platform provides a unique identification of that specific instantiation of the platform, 
including all its parts and their versions. 

Self-assessment: 

As a provisionable key store the TOE is provisioned with a unique secret identity key (256 bit 
ECC key using curve NIST P-256) and a corresponding certificate (PEM format X.509 
containing the corresponding 256 bit ECC public key, with a SHA-256 hash). The certificate is 
issued by a CA installed on the factory provisioning system and is installed onto the device 
with the complete chain of CA certificates back to the root. This certificate provides each 
individual device with a unique cryptographic identity, verifiable by challenging the device 
to prove possession of the corresponding private key by signing a piece of data provided by 
the challenging party. The IETF’s TLS specifications (IETF RFC 5246 and IETF RFC 8446) for 
transport-layer security implement such a challenge-response mechanism and are widely 
implemented in embedded Internet protocol libraries.  

This is tested by provisioning the TOE onto a target microcontroller using the Embedded 
Trust provisioning system and having a test user application report the installed identity 
certificates and prove possession of the corresponding private key. 

3.2.4 Genuine platform instantiation 

The platform provides an attestation of the “Identification of platform type” and 
“Identification of individual platform”, in a way that cannot be cloned or changed without 
detection. 

Self-assessment: 

Composite developers can guarantee that end users receive only genuine devices, not 
clones or counterfeits, by having remote Internet services or the user application or both 
check the TOE for a validly signed device identity certificate. Such certificates are only issued 
by the factory provisioning system provided as a component of the Embedded Trust 
product. This system signs device identity certificates using a CA key generated by the 
composite developer and installed via secure channels into a secure provisioning system 
located on the authorised production line. Only Embedded Trust provisioning systems 
specifically authorised by the composite developer receive this CA key. Without it, no 
counterfeiter can issue a valid device identity certificate.  

Validly certified devices cannot be cloned either, because their private identity keys are 
never exposed either before or after being provisioned onto each device.  

This is tested by provisioning the TOE onto a target microcontroller using the Embedded 
Trust provisioning system and having a test user application report the installed identity 
certificate chain and verifying that the composite developer’s production CA certificate is 
present in that chain. 

3.2.5 Attested secure state of platform  

The platform provides an attestation of the state of the platform, such that it can be 
determined that the platform is in a secure state. 
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Self-assessment: 

End users and remote services can check that the device’s identity certificate chain includes 
the CA certificate of a composite developer that they trust. If such a certificate is present, 
and the composite developer is trusted to have securely provisioned the TOE, then the 
relying parties can trust that the connecting device is genuine and has executed a secure 
boot process, and consequently is running authentic and integral software, that is reporting 
correct information about its state.  

Because this implementation relies on SFRs “Genuine platform instantiation” and “Secure 
initialization of platform”, its validation is derived from the validation of both those SFRs. 

3.2.6 Factory reset of platform 

The platform can be reset to the state in which it exists when the composite product 
embedding the platform is delivered to the user, before any personal user data, user 
credentials, or user configuration is present on the platform. 

Self-assessment: 

After production-time provisioning of the TOE and user application, the IoT device is ready 
for operation. During operation, storage of user data is managed by the user application - 
the TOE does not store user data. The TOE always remains in the state it was originally after 
production. 

This is verified by reviewing the code of TOE functions serving application APIs, to ensure 
that no data originating in the user application is stored by the TOE. 

3.2.7 Secure install of application 

The application can be installed in the field such that the integrity, authenticity and 
confidentiality of the application is maintained. 

Self-assessment: 

The composite developer can install a first SWUP file to the update slot on devices in the 
field by calling a serial loader from the TOE. This requires setting the conditional compilation 
flag SBM_INCLUDE_LOADER so that the TOE calls the OEM API function sbm_serial_loader, 
which the composite developer must implement. The TOE will then validate the SWUP and 
install the user application into the active slot before passing execution to it. 

Validation consists of a check that the SWUP is signed by the composite developer. The 
signature is generated by the Embedded Trust plugin in the IAR Embedded Workbench IDE 
when the composite developer exports the SWUP. The signature is generated using ECDSA 
with NIST curve P-256. The signature is verified by the TOE using the same algorithm, the 
necessary trust anchor certificate being part of its provisioned data. This check verifies both 
authenticity and integrity of the SWUP. 

Application firmware binaries packaged in SWUPs are encrypted using a 128-bit AES key in 
GCM mode. This key is derived by both parties using ECIES key agreement as described in 
section 3.2.9 part 2. The key pair used in the ECIES procedure by the Embedded Trust plugin 
is ephemeral. A new key pair is generated for each SWUP export operation. The key pair 
used in the ECIES procedure by the TOE is part of its provisioned data and is known as an 
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Update Group Key pair because it may be provisioned onto a group of devices of the same 
underlying hardware platform, which will receive the same SWUP file. 

This is tested by building the TOE with a test implementation of the sbm_serial_loader 
function that reports on a serial output that it has been called.  

3.2.8 Secure update of application 

The application can be updated to a newer version in the field such that the integrity, 
authenticity and confidentiality of the application is maintained. 

Self-assessment: 

The composite developer can load an updated version of the application into the update 
slots of selected devices in the field by implementing an over-the-air SWUP distribution 
mechanism in all over-the-air updatable versions of the application. Once a SWUP has been 
downloaded into the update slot it will be validated and decrypted into the active slot by 
the TOE on next reset. Reset can be triggered by the running version of the application. 

Validation steps include a check that the SWUP is signed by the composite developer as 
detailed in section 3.2.7, and that its version number is higher than that of the currently 
installed application. Version numbers are set by the composite developer at project build 
time and consist of one to three integers, each from 0 to 255, separated by periods, for 
example: 9.4.4. Decryption also proceeds as detailed in section 3.2.7. 

This is tested by enabling debug access in a test build of the TOE and writing both valid and 
invalid SWUP files into the test device’s update slot, verifying that on reset only valid SWUPs 
are installed. 

3.2.9 Cryptographic operation 

The platform provides the application with: 

1. ECDSA digital signature generation and verification functions per NIST FIPS 186-4 
Digital Signature Standard (DSS) section 6.4, using curve P-256 (i.e. a key length of 
256 bits) per section D.1.2.3 of the same document. These functions are made 
available in the Application API as STZ_signUsingKey and STZ_verifyUsingKey.  
 
Signature generation is tested by verifying that If the Application API 
STZ_signUsingKey is called with a 256b hash and an index to a 256b ECC private key 
as arguments, an encrypted version of that hash is returned, decryptable using the 
public part of that key and the NIST P-256 curve. 
 
Signature verification is tested by verifying that if the Application API 
STZ_verifyUsingKey is called with a 256b encrypted hash and a 256b ECC public key 
as arguments, the decrypted hash is returned. 

2. ECIES key agreement per NIST SP800 56Ar3 Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm Cryptography, sections 6.2.2.2 and 
5.7.1.2, excepting that the shared secret is returned directly from the ECDH process 
and not put through a key derivation function. Key agreement also uses curve P-256 



24 
 

(i.e. 256 bit private and public keys), per section D.1.2.3 of NIST FIPS 186-4 Digital 
Signature Standard (DSS). This function is made available in the Application API as 
STZ_generateSharedSecret. 
 
This is tested by verifying that if the Application API STZ_generateSharedSecret is 
called with an ephemeral ECC NIST P-256 public key and an index to an ECC NIST P-
256 private key as arguments, an ephemeral 256b secret is returned. 
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4 Mapping and sufficiency rationales 

4.1 SESIP1 sufficiency 

Assurance Class Assurance Families Covered by Rationale 

ASE: Security Target 
evaluation 

ASE_INT.1 ST Introduction Section 
“Introduction” 
and “Title” 

The ST 
reference is in 
the Title, the 
TOE reference in 
the “Platform 
reference”, the 
TOE overview 
and description 
in “Platform 
functional 
overview and 
description”. 

ASE_OBJ.1 Security 
requirements for the 
operational environment 

Section “Security 
Objectives for 
the operational 
environment” 

The objectives 
for the 
operational 
environment in 
“Security 
Objectives for 
the operational 
environment” 
refers to the 
guidance 
documents. 

ASE_REQ.3 Listed Security 
requirements 

Section “ 

Security 
Functional 
Requirements”. 

All SFRs in this 
ST are taken 
from [SESIP]. 

“Identification 
of platform 
type” is 
included. 

Exclusion of 
“Secure update 
of platform” is 
addressed in 
section” Flaw 
Reporting 
Procedure 
(ALC_FLR.2)” 

ASE_TSS.1 TOE Summary 
Specification 

Section “Security 
requirements 

All SFRs are 
listed per 
definition, and 
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and 
implementation” 

for each SFR the 
implementation 
and verification 
is defined in  

Security 
Functional 
Requirements. 

ALC: Life-cycle 
support 

ALC_FLR.2 Flaw reporting 
procedures  

Section “Flaw 
Reporting 
Procedure 
(ALC_FLR.2)” 

The flaw 
reporting and 
remediation 
procedure is 
described. 

AVA_VAN.1 AVA_VAN.1 Vulnerability 
survey 

Section 
“Vulnerability 
Survey 
(AVA_VAN.1)” 

The vulnerability 
survey and 
associated test 
results are 
described. 
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