Document information

<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>SESIP, Security Target, i.MX RT1050/RT1060</td>
</tr>
<tr>
<td>Abstract</td>
<td>Evaluation of the i.MX RT1050 and i.MX RT1060 developed and provided by NXP Semiconductors, BL MICR, according to SESIP Assurance Level 1 (SESIP1)</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-02-19</td>
<td>First version with new template</td>
</tr>
<tr>
<td>1.1</td>
<td>2018-02-25</td>
<td>Update after evaluator comments</td>
</tr>
</tbody>
</table>
1 Introduction

This Security Target describes the i.MX RT1050/RT1060 platform that is evaluated according to the Security Evaluation Scheme for IoT Platforms (SESIP) [1]. The security properties are described in Section 3 of this document, and will be upheld by the platform when the objectives for the environment (described in Section 2) are fulfilled by the platform consumer.

1.1 ST Reference

i.MX RT1050/RT1060, SESIP Security Target, Revision 1.1, NXP Semiconductors, 25 February 2019.

1.2 TOE Reference

Table 1. TOE Reference

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE Name</td>
<td>i.MX RT1050/RT1060</td>
</tr>
<tr>
<td>TOE Version</td>
<td>Rev. A and Rev. B</td>
</tr>
<tr>
<td>TOE Identification</td>
<td>i.MX RT1050/RT1060</td>
</tr>
<tr>
<td>TOE Type</td>
<td>Microcontroller platform for connected applications</td>
</tr>
</tbody>
</table>

Note: The difference between TOE Version Rev. A and Rev. B are optimizations only. There is no difference in security functionality between the revisions.

1.3 Guidance Documents

The following documents are included with the platform:

Table 2. Guidance Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Manual</td>
<td>i.MX RT1050:</td>
</tr>
<tr>
<td></td>
<td>i.MX RT1060:</td>
</tr>
<tr>
<td>Security Reference Manual</td>
<td>i.MX RT1050/RT1060:</td>
</tr>
</tbody>
</table>

1.4 TOE Overview and Description

The i.MX RT1050/RT1060 is a new processor family featuring NXP’s advanced implementation of the high performance Arm® Cortex®-M7 core running at 600 MHz. It provides high CPU performance and best real-time response. This device provides various memory interfaces, including SDRAM, Raw NAND FLASH, NOR FLASH, SD/eMMC, Quad SPI (FlexSPI), and a wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, displays, camera sensors, and GPS. Same as other i.MX processors, this i.MX RT series also has rich audio and video features,
including LCD display, basic 2D graphics, camera interface, SPDIF and I2S audio interface.

The i.MX RT1060 family doubles the on-chip SRAM to 1MB while keeping pin-to-pin compatibility with i.MX RT1050. Additional features make it ideal for real-time applications such as High-Speed GPIO, CAN-FD, and synchronous parallel NAND/NOR/PSRAM controller.

The functional block diagram is shown in the figure below. This diagram provides a view of the chip's major functional components and core complexes.

![Functional Block Diagram](image)

Figure 1. Functional Block Diagram

All products built using this chip share a general need for security, though the specific security requirements vary greatly from product to product. For example, portable consumer devices need to protect a different type and cost of assets than the automotive or industrial platforms. Each market must be protected against different kinds of attacks.
The product designers need an appropriate set of counter measures to meet the security needs of their specific product.

To help the product designers to meet the requirements of each market, the chip incorporates a range of security features. Most of these features provide protection against specific kinds of attack, and can be configured for different levels according to the required degree of protection. These features are designed to work together or independently. They can be also integrated with the appropriate software to create defensive layers. In addition, the chip includes a general-purpose accelerator that enhances the performance of selected industry-standard cryptographic algorithms.

The security features of the platform include:

- Secure High-Assurance Boot
 - Security library embedded in the tamper-proof on-chip ROM
 - Authenticated boot, which protects against unauthorized software
 - Verification of the code signature during boot
 - RSA-1024/2048/3072/4096 keys anchored to the OTP fingerprint (SHA-256)
 - Encrypted boot which protects the software confidentiality
 - Runs every time the chip is reset
 - Image version control/image revocation (on-chip OTP-based)
- Secure storage
 - Off-chip storage protection using AES-128 and the chip's unique hardware-only key
- Hardware cryptographic accelerators
 - Symmetric: AES-128
 - Hash message digest: SHA-1, SHA-256
- True and pseudorandom number generator
- On-chip secure real-time clock with autonomous power domain
- Secure debugging
 - Configurable protection against unauthorized JTAG manipulation
 - Three security levels + a complete JTAG disable
 - Support for JTAG port secure reopening for field return debugging
- Universal unique ID
- Electrical fuses (OTP Memory)
- Hardware bus encryption
 - AES-128 encryption, supporting ECB and CTR modes
 - Non-secured access filtering

The platform is intended to be used by an integrator that deploys it into a connected solution together with its own operating systems and user applications.

The main security features of the platform are listed in Section 3 of this document.

1.4.1 Physical Scope of the TOE

The physical scope is the i.MX RT1050/RT1060 microcontroller as identified in Table 1 and whose functional blocks are identified in Figure 1. It includes the dedicated firmware located in the on-chip boot ROM.
1.4.2 Logical Scope of the TOE

The logical scope includes the hardware interfaces that operating systems or applications would make use of. The logical scope of the firmware is limited to the HAB functionality stored in the on-chip boot ROM.

Any OS or application software stored on the platform is not in scope of this evaluation.

1.4.3 Required non-TOE Hardware/Software/Firmware

No additional non-TOE hardware, software or firmware is required for the correct functioning of the security claims described in this document.
2 Security Objectives for the Operational Environment

In order for the platform to fulfill its security requirements, the operational environment (technical or procedural) must fulfil the following objectives:

• The OS or application developer shall verify the correct version of all platform components it depends on as described in the Reference Manual.
• The OS or application developer shall enable the HAB feature as described in the Security Reference Manual.
• To allow execution of unknown code while maintaining the protection of platform security features as declared in Section 3, the OS or application developer shall configure restrictive memory boundaries via the MPU as described in the Security Reference Manual.

Please refer to Section 1.3 for references to the guidance documentation mentioned above.
3 Security Requirements

3.1 Security Functional Requirements

The Security Functional Requirements (SFRs) are listed below, together with a short rationale explaining why the platform meets the requirement (*in italics*).

3.1.1 Identification and Attestation of Platforms and Applications

3.1.1.1 Identification of Platform Type

The platform provides a unique identification of the platform type, including all its parts and their versions.

The chip includes values in the fuses that uniquely identify the platform type, including a part of the Lot identifier and a Silicon Revision Number as described in the Reference Manual and Security Reference Manual.

The fuses are written as part of the production process, and the production testing procedures verify the value has been written correctly.

3.1.1.2 Identification of Individual Platform

The platform provides a unique identification of that specific instantiation of the platform, including all its parts and their versions.

The chip includes in fuses a 64-bit unique identifier. It also includes values in the fuses that uniquely identify a lot, wafer and x-y coordinates that uniquely identify a given die.

The fuses are written as part of the production process, and the production testing procedures verify the value has been written correctly.

3.1.1.3 Secure Initialization of Platform

The platform ensures its authenticity and integrity during the platform initialization. If the platform authenticity or integrity cannot be ensured, the platform will go to a secure state.

The chip includes NXP's High Assurance Boot (HAB). When the device boots, the execution starts in the device's physical ROM by the secure boot mechanism that verifies the authenticity of the firmware before executing it. The signature uses RSASSA-PKCS1-v1_5 signature [8] of a SHA256 digest with 1024-bit to 4096-bit key size.

The public key used for signing the firmware is itself authenticated by a chain of signatures in a certificate, using one of four root keys. A fingerprint of these root keys is stored in the device’s manufacturer-programmable on-chip fuses, and used to validate the root key.

In case of failure, depending on lifecycle and configuration, the chip may first look for a recovery boot image, before waiting on a Serial Downloader (e.g., on USB) for an authenticated image.

The HAB feature is tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.
3.1.2 Product Lifecycle: Factory Reset / Install / Update / Decomission

3.1.2.1 Secure Update of Platform

The platform can be updated to a newer version in the field such that the integrity, authenticity and confidentiality of the platform is maintained.

The platform does not support the update or patching of firmware located in the on-chip ROM. It does offer a feature for customers to implement secure update mechanisms of their own code. According to [1] the absence of this functionality for the platform must be explained as part of ALC_FLR.2. Please see Section 3.2.1 for this explanation.

3.1.2.2 Decommission of Platform

The platform can be decommissioned.

The chip includes a Field Return mode, in which access to the device keys is permanently disabled, including access from the DCP module. In that mode, debugging is possible, as well as execution of any firmware.

The switch to Field Return mode can only be obtained by loading a chip-specific boot image that includes the chip’s unique ID, verifying its authenticity, and by running it. Such a boot image can only be authenticated by using one of the keys allowed to sign firmware images.

The Field Return mode is tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.

3.1.3 Extra Attacker Resistance

3.1.3.1 Software Attacker Resistance: Isolation of Platform

The platform provides isolation between the application and itself, such that an attacker able to run code as an application on the platform cannot compromise the other functional requirements.

The platform provides isolation between different kinds of applications, through the following mechanisms:

- Memory Protection Unit (MPU). The platform includes a MPU that can restrict the read and write accesses to memory regions (including regions mapped to peripherals), and therefore restrict the access of some regions to code running in Handler and/or Privileged mode.
- Bus Encryption Engine (BEE). This mechanism can be used to encrypt different memory regions with different keys that cannot be disclosed to applications, therefore protecting the confidentiality of the data stored in these regions from unauthorized part of the application.

The MPU and BEE are tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.
3.1.4 Cryptographic Functionality

3.1.4.1 Cryptographic Operation

The platform provides the application with encryption and decryption functionality as specified in FIPS 197 (AES) [6] for key length 128 and modes ECB and CBC.

The platform provides the application with hashing functionality as specified in FIPS 180-4 [5] for digests of 160 bits (SHA-1).

The platform provides the application with hashing functionality as specified in FIPS 180-4 [5] for digests of 256 bits (SHA-256).

The support for cryptographic operations is described in the Security Reference Manual. The Data Co-Processor (DCP) provides hardware acceleration for the AES and SHA operations.

The Data Co-Processor (DCP) includes local storage in which keys can be stored and can then be used for cryptographic computations without ever being readable from the application. An OTP key is also stored in eFuses; it cannot be read by the application and it is copied directly into the DCP during its initialization. This key can be used as a Key Encryption Key (KEK) to protect other cryptographic keys or sensitive credentials.

The cryptographic functionalities are tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.

3.1.4.2 Cryptographic Keystore

The platform provides the application with a way to store cryptographic keys such that not even the application can disclose this data. This data can be used for the cryptographic operations: encryption, decryption, signature generation.

The Data Co-Processor (DCP) includes local storage in which keys can be stored and can then be used for cryptographic computations without ever being readable from the application. An OTP key is also stored in eFuses; it cannot be read by the application and it is copied directly into the DCP during its initialization. This key can be used as a Key Encryption Key (KEK) to protect other cryptographic keys or sensitive credentials.

A similar mechanism is available in the Bus Encryption Engine (BEE), where the same OTP Key can be used. The BEE can be used to encrypt different memory regions with different keys that cannot be disclosed to applications, therefore protecting the confidentiality of the data stored in these regions from unauthorized part of the application.

The DCP is tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.

3.1.4.3 Cryptographic Random Number Generation

The platform provides the application with a way based on physical noise to generate random numbers to as specified in SP800-90B [7].

The platform includes a Standalone True Random Number Generator (SA-TRNG) module that generates a 512-bit entropy as needed by an entropy-consuming module or by other post-processing functions.
The RNG functionality is tested against a defined stochastic model by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.

3.1.5 Compliance Functionality

3.1.5.1 Secure Encrypted Storage

The platform ensures that all data stored by the application, with the exception of data that the user doesn’t explicitly encrypt, is encrypted as specified in FIPS 197 (AES)\(^6\) with a platform instance unique key of keylength 128 in ECB or CTR modes.

An OTP key is stored in eFuses and used in the DCP; it cannot be read by the application and it is copied directly into the DCP during its initialization. This key can be used as a Key Encryption Key (KEK) to protect other cryptographic keys or sensitive credentials.

A similar mechanism is available in the Bus Encryption Engine (BEE), where the same OTP Key can be used. The BEE can be used to encrypt different memory regions with different keys that cannot be disclosed to applications, therefore protecting the confidentiality of the data stored in these regions from unauthorized part of the application.

The secure storage functionalities are tested thoroughly by means of simulation tests during the design phase and by validation campaigns before chip release. Each die undergoes production tests to ensure its correct functioning on each final product.

3.2 Security Assurance Requirements

The claimed assurance requirements package is: SESIP1 as defined in [1]. The assurance requirements are as follows:

<table>
<thead>
<tr>
<th>Assurance Class</th>
<th>Assurance Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE: Security Target Evaluation</td>
<td>ASE_INT.1 ST Introduction</td>
</tr>
<tr>
<td></td>
<td>ASE_OBJ.1 Security requirements for the operational environment</td>
</tr>
<tr>
<td></td>
<td>ASE_REQ.3 Listed security requirements</td>
</tr>
<tr>
<td></td>
<td>ASE_TSS.1 TOE summary specification</td>
</tr>
<tr>
<td>ALC: Life-cycle Support</td>
<td>ALC_FLR.2 Flaw reporting procedures</td>
</tr>
</tbody>
</table>

3.2.1 Flaw Reporting Procedures (ALC_FLR.2)

In accordance with the requirement for flaw reporting procedures (ALC_FLR.2), the developer has defined the following procedure:

NXP has defined a Product Security Incident Response Process (PSIRT), implemented by a dedicated team (PSIRT). This process provides a publicly available interface (https://nxp.com/psirt), and includes 4 steps:

- **Reporting.** The process begins when the PSIRT becomes aware of a potential security vulnerability in an NXP product. The reporter receives an acknowledgment and updates throughout the handling process.
• **Evaluation.** The PSIRT confirms the potential vulnerability, assesses the risk, determines the impact and assigns a processing priority. If the vulnerability is confirmed, the priority determines how the issue is handled throughout the remaining steps in the process.

• **Solution.** Working with PSIRT, the product team develops a solution that mitigates the reported security vulnerability. Solutions will take different forms based on the vulnerability. Because of the nature of NXP products – mostly silicon products where the firmware is in ROM –, very often the solution can only be provided in a next version of the chips and the short-term solution will consist of recommending security measures to be applied in systems using the NXP product.

• **Communication.** As said above, because of the nature of the NXP products, the solution to systems using the affected products often needs to be found in additional countermeasures in those systems. The communication on the vulnerability and solutions will in most cases be done directly towards the affected customers. For previously unknown or unreported issues, NXP will acknowledge the reporter of the issues (unless the reporter requests otherwise).

The firmware located in the on-chip ROM of the platform cannot be updated or patched. However, the platform’s High Assurance Boot (HAB) feature is able to verify the authenticity of customer code during the initial boot and outside of the boot sequence, providing an appropriate mechanism for supporting the update of this code. The update mechanism itself has to be provided by the customer, most likely at the operating system level and is not in scope of this evaluation.
4 Mapping and Sufficiency Rationales

4.1 ITP1 Sufficiency

<table>
<thead>
<tr>
<th>Assurance Class</th>
<th>Assurance Family</th>
<th>Covered By</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE: Security Target Evaluation</td>
<td>ASE_INT.1 ST Introduction</td>
<td>Section 1</td>
<td>The ST reference is in Section 1.1, the TOE reference in Section 1.2, the TOE overview and description in Section 1.4.</td>
</tr>
<tr>
<td></td>
<td>ASE_OBJ.1 Security requirements for the operational environment</td>
<td>Section 2</td>
<td>The objectives for the operational environment in Section 2 refer to the guidance documents.</td>
</tr>
<tr>
<td></td>
<td>ASE_REQ.3 Listed security requirements</td>
<td>Section 3</td>
<td>All SFRs in this ST are taken from [1]. SFR “Identification of Platform Type” is included. SFR “Secure Update of Platform” is mentioned but refers to ALC_FLR.2.</td>
</tr>
<tr>
<td></td>
<td>ASE_TSS.1 TOE Summary Specification</td>
<td>Section 3</td>
<td>All SFRs are listed per definition, and for each SFR the implementation and verification is defined in the SFR.</td>
</tr>
<tr>
<td>ALC: Life-cycle Support</td>
<td>ALC_FLR.2 Flaw reporting procedures</td>
<td>Section 3.2.1</td>
<td>The flaw reporting and remediation procedure is described.</td>
</tr>
</tbody>
</table>
5 Bibliography

5.1 Evaluation Documents

5.2 Developer Documents

5.3 Standards

Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interuption, costs related to the removal or replacement of any products or work or repair) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer’s applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

6.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Tables

Tab. 1.	TOE Reference ... 3
Tab. 2.	Guidance Documents ..3
Tab. 3.	Security Assurance Requirements for SESIP1 .. 11
Figures

Fig. 1. Functional Block Diagram 4
Contents

1 Introduction ... 3
 1.1 ST Reference .. 3
 1.2 TOE Reference .. 3
 1.3 Guidance Documents .. 3
 1.4 TOE Overview and Description 3
 1.4.1 Physical Scope of the TOE 5
 1.4.2 Logical Scope of the TOE 6
 1.4.3 Required non-TOE Hardware/Software/ Firmware .. 6
2 Security Objectives for the Operational Environment .. 7
3 Security Requirements 8
 3.1 Security Functional Requirements 8
 3.1.1 Identification and Attestation of Platforms and Applications .. 8
 3.1.1.1 Identification of Platform Type 8
 3.1.1.2 Identification of Individual Platform 8
 3.1.1.3 Secure Initialization of Platform 8
 3.1.2 Product Lifecycle: Factory Reset / Install / Update / Decomission 9
 3.1.2.1 Secure Update of Platform 9
 3.1.2.2 Decommission of Platform 9
 3.1.3 Extra Attacker Resistance 9
 3.1.3.1 Software Attacker Resistance: Isolation of Platform .. 9
 3.1.4 Cryptographic Functionality 10
 3.1.4.1 Cryptographic Operation 10
 3.1.4.2 Cryptographic Keystore 10
 3.1.4.3 Cryptographic Random Number Generation 10
 3.1.5 Compliance Functionality 11
 3.1.5.1 Secure Encrypted Storage 11
 3.2 Security Assurance Requirements 11
 3.2.1 Flaw Reporting Procedures (ALC_FLR.2) 11
4 Mapping and Sufficiency Rationales 13
 4.1 ITP1 Sufficiency ... 13
5 Bibliography .. 14
 5.1 Evaluation Documents .. 14
 5.2 Developer Documents .. 14
 5.3 Standards ... 14
6 Legal information .. 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 February 2019