
Evidence of Compliance to the ETSI TS
103 732-1/TS 103 732-2 and GSMA
Requirements

Overview
The general purpose of this document is to provide a natural language translation of the
Common Criteria requirements that can be more readily understood. The requirements here are
a combination of Security Functional Requirements (SFRs) and Security Assurance
Requirements (SARs).

SFRs can generally be considered testable requirements on the device, though this is not
always the case. In cases where it is not explicitly testable, generally evidence of meeting the
requirement is provided, such as source code or pointing to another evaluation which proves the
requirement is met. SFRs are always focused on the device itself, either a software or hardware
component of the device which supports a security requirement.

SARs can generally be considered documentation requirements and may be focused on the
device, on the production of the device (manufacturing) or in-market support. There may be
some device testing done where it is possible to prove a requirement with a test (instead of
documentation), but the majority of SARs will not require testing (this may change over time).

Beyond the TS 103 732 requirements, there are additional areas that require documentation to
support the security evaluation of the device. These are listed after the TS 103 732
requirements.

How to complete the questionnaire:

TS 103 732
SFR, SAR
or GSMA
requirement

Requirement description Supported?
(Y/N) Evidence required for submission

SFR from TS 103 732 or GSMA to be filled out

Y or N
OEM response goes here, depending on evidence
requirement either provide a description, documentation or
a reference to supporting material to be included with
submission of the completed questionnaire.

Several items will need to be submitted along with the completed questionnaire. These may
include, but not limited to:

● Process, policy, procedure, architectural and design documentation
● Source code listings, samples, and repositories

● Configuration data such as kernel defconfigs, bootloader configuration, SELinux policies
● Assessment reports for items such as privileged applications, OTA update services
● Devices configured as production, as well as userdebug, and any custom tools required

for loading software

When answering the questionnaire, the set of devices being considered should be limited to
those released in the last 12 months or with an impending release. Where appropriate, general
responses covering all devices may be provided; device-specific responses should not be
needed unless requirement implementation differs significantly.

The ETSI TS 103 732-1 questionnaire sections are grouped as they are in the Protection
Profile:

● Cryptographic Support
● User Data Protection
● Identification and Authentication
● Security Management
● Privacy
● Protection of the TSF
● Trusted Path/Channels
●

The ETSI TS 103 732-2 sections:

● Identification and Authentication

The ETSI TS 103 732-4 sections:

● Applications
● Application Risk

The ETSI TS 103 732-5 sections:

● Bootloader - User Data Protection
● Bootloader - Protection of the TSF
● Bootloader - Life Cycle
● Root of Trust - Protection of the TSF

The GSMA FS.56 sections:

● Cryptographic Support
● Identification and Authentication
● Privacy
● Protection of the TSF
● Live Cycle Requirements

Devices for Certification
The following tables are for specifying the devices that will be certified. Add rows as necessary
for each separate device covered in the evaluation.

Evaluated Devices

Device Operating System OS Version Kernel Version

Pixel 8a Android 15 5.15

Device Model(s) CPU Architecture CPU

Pixel 8a G5760D, G6GPR,
G8HHN

ARM64 Tensor G3

Equivalent Devices
The devices here are claimed by the developer as equivalent to an evaluated device.

Claimed Device Evaluated Device Differences between devices

Pixel 8 Pro Pixel 8a Screen size, battery capacity,
storage/memory capacity, case materials

Pixel 8 Pixel 8a Screen size, battery capacity,
storage/memory capacity, case materials

TS 103 732-1 SFRs

Cryptographic Support
This section is focused on the cryptography that is used in the system.This includes both key
lifecycles and the cryptographic algorithms that are in use.

The requirements for cryptographic algorithms are open as long as the algorithm is able to meet
the requirements set by ISO for adding the algorithm to the ISO standard. Note that this does
not mean that the algorithm shall be submitted to ISO for inclusion in their standards, only that it
meets those requirements. This ensures that the algorithm has been publicly available and
reviewed, and so is considered acceptable for use to meet the security claims of this evaluation.

FCS_RNG_
EXT.1

Devices shall provide at least one random number generator
(RNG) that produces uniformly-distributed, unpredictable output.

Supported?
(Y/N)

For each RNG on the device, provide a description of the type
(such as physical or software) and how the amount of entropy
provided has been verified. Common examples of proof would
be NIST 800-90B or AIS 31 analysis.

FCS_RNG_EXT.1.1 The TSF shall provide a [physical,
deterministic] random number generator.

FCS_RNG_EXT.1.2 The TSF shall provide random numbers
that meet [hardware noise sources that provide at least .8bits of
entropy per bit of output in the AP and Titan M2, a SHA-256
HMAC_DRBG in the Titan M2 and AES CTR_DRBG in
BoringSSL].

Y

The device uses several different RNGs to provide sufficient
entropy during key generation.

In hardware, there are two separate physical sources. The
Application Processor (AP) and the Titan M2 chip each provide
independent physical noise sources to generate random output.

Normal operating and startup output from both of the physical
sources have been checked using the NIST 800-90B entropy
test tools to provide sufficient entropy to ensure that the output
from the hardware DRBGs will provide at least 1 bit of entropy
for every bit requested. The DRBGs both use 384 bits of input to
generate the 256-bit output blocks.

The Titan M2 chip noise source output is used to seed a SHA-
256 HMAC_DRBG for use inside the chip.

The AP output is provided to the system via the /dev/hw_random
(or similar) device.

The Android DRBGs are able to use the output from
/dev/hw_random for seeding. As this device is normally
restricted to only kernel processes, Android provides an entropy
daemon that uses the BoringSSL AES CTR_DRBG to provide a
constant source of entropy to user-space services (mainly
BoringSSL itself). The DRBG in the entropy daemon is reseeded
every 200 requests (well below the NIST 800-90B requirements
for reseeding an approved DRBG function).

In Android itself, when a request for a new random string is
made, the AES CTR_DRBG that is provided as part of the
BoringSSL library (libcrypto) is called. This DRBG is seeded by
calling the entropy daemon for 384 bits to produce a 256-bit key.

Each DRBG has been verified according to NIST testing:

Titan M2 DRBG: A4707
BoringSSL DRBG: A6134

FCS_CKM.1
/Asymmetri
c

Devices shall generate asymmetric keys properly that can meet
at least the equivalent of 128-bit symmetric encryption strength. Supported?

(Y/N) The process for generating asymmetric keys on the device shall
be explained. This will be specific to the algorithm(s) in use.

FCS_CKM.1.1/Asymmetric The TSF shall generate
cryptographic keys in accordance with a specified cryptographic
key generation algorithm [RSA and ECDSA] and specified
cryptographic key sizes [RSA keys of 2048, 3072, 4096, ECDSA
keys of P-256, P-384, P-521] that meet the following: [FIPS 186-
5].

Y

BoringSSL and the Titan M2 chip both support generating RSA
and ECDSA keys compliant with NIST FIPS 186-4 that are
equivalent (or greater) than 112-bit symmetric strength (RSA
2048 and ECC 256). BoringSSL supports generating keys that
are of 128-bit strength and higher for both RSA and ECDSA. In
both cases the DRBG from FCS_RNG_EXT.1 is used in the
process.

Titan M2 DRBG: A4707
BoringSSL DRBG: A6134

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744

FCS_CKM.1
/Symmetric

Devices shall generate symmetric keys of at least 128-bit length
either by generating the key using a RNG or by a derivation
function. Supported?

(Y/N) The process for generating the keys on the device shall be
explained. For example, the key is generated by calling the
RNG.

FCS_CKM.1.1/Symmetric The TSF shall generate
cryptographic keys in accordance with a specified cryptographic
key generation algorithm [using AES CTR_DRBG in BoringSSL
and SHA-256 HMAC_DRBG in the Titan M2] and specified
cryptographic key sizes [256-bits] that meet the following:
[assignment: list of standards].

Y

BoringSSL and the Titan M2 chip both support generating
symmetric (AES) keys compliant with NIST FIPS 197 that are
equivalent (or greater) than 128-bit symmetric strength. In both
cases the DRBG from FCS_RNG_EXT.1 is used in the process.

FCS_COP.1 Note
All the algorithms listed under FCS_COP.1 may have multiple implementations throughout the
system. For example, symmetric encryption is likely to be available in low level hardware (i.e.
SoC), a hardware storage encryption engine, a hardware-backed key store (if support is
provided), the SEE, the kernel and within the main OS itself. Not all algorithms may be available
in all components, and different configurations may provide different options.

The expectation for this section is that each instance of an algorithm type be specified if it is key
to providing security services for the device (i.e. if an algorithm is available for user-installed
applications or is not used by the security components of the device itself, they do not need to
be listed).

FCS_COP.1
/SigGen

Devices shall support an asymmetric algorithm that is used to
verify the signature of update packages (both for the OS and
applications).

Multiple algorithms may be supported for different purposes.

Supported?
(Y/N)

Each supported algorithm shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example FIPS 186-4 for RSA).

FCS_COP.1.1/SigGen The TSF shall perform
[CRYPTOGRAPHIC SIGNATURE SERVICES (GENERATION
AND VERIFICATION)] in accordance with a specified
cryptographic algorithm [RSA keys 2048-bits or greater, ECDSA

Y

using NIST curves P256, P384, P-521] that meet the following:
[FIPS PUB 186-5].

FIPS 186-5 support for both RSA and ECDSA (though Titan M2
only supports RSA 2048 and ECDSA P256).

Titan M2 DRBG: A4707
BoringSSL DRBG: A6134

FCS_COP.1
/KeyEst

Devices shall support a key establishment algorithm for the
encryption/decryption of user data. This shall list the algorithm
used for user data encryption in transit, and algorithms used in
other parts of the system. Supported?

(Y/N) Each supported algorithm shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example FIPS 197 for AES).

FCS_COP.1.1/Symmetric The TSF shall perform
[CRYPTOGRAPHIC KEY ESTABLISHMENT] in accordance
with a specified cryptographic algorithm [Elliptic curve-based key
establishment schemes] and cryptographic key sizes [256 bits]
that meet the following: [NIST Special Publication 800-56A
Revision 3, “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography”].

Y

To support TLS communications, BoringSSL supports ECDH
key pair generation.

BoringSSL DRBG: A6134

FCS_COP.1
/Symmetric

Devices shall support a symmetric algorithm for the
encryption/decryption of user data. This shall list the algorithm
used for user data encryption, and algorithms used in other parts
of the system. Supported?

(Y/N) Each supported algorithm shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example FIPS 197 for AES).

FCS_COP.1.1/Symmetric The TSF shall perform [SYMMETRIC
ENCRYPTION AND DECRYPTION] in accordance with a
specified cryptographic algorithm [AES] and cryptographic key
sizes [256-bits] that meet the following: [AES as defined in FIPS
PUB 197 with CBC (SP800-38A), CCM (SP800-38C), Key Wrap

Y

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744

(SP800-38F), GCM (SP800-38D), XTS (SP800-38E) and GCM
(SP800-38D) modes].

Multiple modules provide symmetric encryption using AES.
These algorithms are all verified as part of the NIST algorithm
testing.

AP (SoC): A4656

Storage (ISE): A4645

BoringSSL: A6134

Titan M2: A4707

Trusty TEE: A4402

Wi-Fi chip: A2442 A2509

FCS_COP.1
/Derivation

Devices shall support a key derivation function.

Supported?
(Y/N)

Each supported function shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example NIST SP 800-108 for
KBKDF or NIST SP 800-132 for PBKDF2).

FCS_COP.1.1/Derivation The TSF shall perform [DERIVATION
FUNCTION] in accordance with a specified cryptographic
algorithm [HMAC-SHA2-256 and scrypt, CMAC-AES] and
cryptographic key sizes [128 bits, 256 bits] that meet the
following: [NIST SP 800-108 (CMAC-AES, HMAC-SHA2-256)
and no standard (scrypt)].

Y

Multiple modules provide KDF algorithms using NIST SP 800-
108. These algorithms are all verified as part of the NIST
algorithm testing.

AP (SoC): A4656

Lockscreen settings: A2168

Titan M2: A4707

Trusty TEE: A4402

To derive a key from user input (password/PIN/pattern), the user
input (and salt) is processed using scrypt (which contains a

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37266
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37255
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37012
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35052
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35120
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35120
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37266
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34777
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37012

PBKDF2 operation, followed by a series of ROMix operations
and then one final PBKDF2). This key is then combined with a
hardware-fused key using a KDF function inside the TEE (the
output key is not used on its own, only in combination with the
hardware-fused key).

FCS_COP.1
/Hash

Devices shall support a cryptographic hash algorithm.
Supported?

(Y/N)
Each supported algorithm shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example FIPS 180-4 for SHA).

FCS_COP.1.1/Hash The TSF shall perform [CRYPTOGRAPHIC
HASHING] in accordance with a specified cryptographic
algorithm [SHA2-256, 384 and 512] and cryptographic key sizes
[NONE] that meet the following: [FIPS 180-4].

Y

Multiple modules provide hash algorithms using SHA2. These
algorithms are all verified as part of the NIST algorithm testing.

AP (SoC): A4656

Storage (ISE) (for self-test): A4644

BoringSSL: A6134

Titan M2: A4707

Trusty TEE: A4402

FCS_COP.1
/KeyedHash

Devices shall support a message authentication code algorithm.
Supported?

(Y/N)
Each supported algorithm shall be listed along with the key sizes
supported. The listing should point to the standard used to
implement the algorithm (for example FIPS 198-1 for HMAC).

FCS_COP.1.1/KeyedHash The TSF shall perform [KEYED-
HASH MESSAGE AUTHENTICATION] in accordance with a
specified cryptographic algorithm [HMAC-SHA2-256, 384, 512]
and cryptographic key sizes [256, 384 and 512 bits] that meet
the following: [FIPS 198-1 and FIPS 180-4]. Y

Multiple modules provide keyed hash algorithms using SHA2.
These algorithms are all verified as part of the NIST algorithm
testing.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37266
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37254
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37012

AP (SoC): A4656

Storage (ISE) (for self-test): A4644

BoringSSL: A6134

Titan M2: A4707

Trusty TEE: A4402

FCS_CKH_
EXT.1/Low

Devices shall provide encrypted storage that is not tied to the
user credentials. This can require separate apps to explicitly
implement the functionality, but it shall be available in the
device. Supported?

(Y/N) Documentation shall provide:
● Description of how DE keys are generated/derived

○ Algorithms, key lengths used in the process
● Description of how DE keys are cryptographically tied to

hardware-backed keystore

FCS_CKH_EXT.1.1/Low The TSF shall support a key hierarchy
for data encryption keys to protect [LOW USER DATA
ASSETS].

FCS_CKH_EXT.1.2/Low The TSF shall ensure that all keys in
the key hierarchy are derived and/or generated according to [file
encryption keys are generated using AES_CTR DRBG from
BoringSSL and are encrypted using a key that is derived from
the DUK] ensuring that the key hierarchy uses the DUK and [NO
USER CREDENTIALS] directly or indirectly in the derivation of
the data encryption key(s) for [LOW USER DATA ASSETS].

FCS_CKH_EXT.1.3/Low The TSF shall ensure that all keys in
the key hierarchy and all data used in deriving the keys in the
hierarchy are protected according to [no other rules].

Y

https://source.android.com/docs/security/features/encryption/file-
based
https://developer.android.com/training/articles/direct-boot.html

Android provides a key hierarchy tied to the device root key that
allows some data to be encrypted by accessed before the user
has successfully authenticated (such as phone calls or alarms).

This follows the credentialed encryption key hierarchy but uses a
hardcoded password instead of the user’s password (after that

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37266
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37254
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38744
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37317
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=37012
https://source.android.com/docs/security/features/encryption/file-based
https://source.android.com/docs/security/features/encryption/file-based
https://developer.android.com/training/articles/direct-boot.html

all data stored for DE storage is handled the same, just using
the separate key hierarchy to handle the encryption keys).

Use of this requires the app to explicitly take advantage of the
DE storage capability.

FCS_CKH_
EXT.1/Medi
umHigh

Devices shall provide encrypted storage that is tied to the user
credentials. By default all user data shall be decrypted after the
user authenticates the first time (device boot).

Additionally the device shall provide the functionality to keep
user data encrypted once the device has been unlocked but the
user is not active (the user logged into the device at start-up and
then the device has since been screen locked and requires the
user to provide credentials again). This additional functionally
can require separate apps to explicitly implement the
functionality, but it shall be available in the device.

Supported?
(Y/N)

Documentation shall provide:
● Description of how CE keys are generated/derived

○ Algorithms, key lengths used in the process
● Description of how CE keys are cryptographically tied to

hardware-backed keystore
● Description of how CE keys are cryptographically tangled

with the user’s credentials

FCS_CKH_EXT.1.1/MediumHigh The TSF shall support a key
hierarchy for data encryption keys to protect [MEDIUM AND
HIGH USER DATA ASSETS].

FCS_CKH_EXT.1.2/MediumHigh The TSF shall ensure that all
keys in the key hierarchy are derived and/or generated
according to [file and encryption keys are generated using
AES_CTR DRBG from BoringSSL and are encrypted using a
key that is derived from a combination of the user’s credentials
and the DUK] ensuring that the key hierarchy uses the DUK and
[THE USER CREDENTIALS] directly or indirectly in the
derivation of the data encryption key(s) for [MEDIUM AND HIGH
USER DATA ASSETS].

FCS_CKH_EXT.1.3/MediumHigh The TSF shall ensure that all
keys in the key hierarchy and all data used in deriving the keys
in the hierarchy are protected according to [no other rules].

Y

MEDIUM
https://source.android.com/docs/security/features/encryption/file-
based
https://developer.android.com/training/articles/direct-boot.html

https://source.android.com/docs/security/features/encryption/file-based
https://source.android.com/docs/security/features/encryption/file-based
https://developer.android.com/training/articles/direct-boot.html

Android provides a key hierarchy tied to both the user’s
password and the device root key that protects all data by
default such that it is not available until after a successful
authentication from the user. This is called Credentialed
Encryption (CE).

The CE key hierarchy binds the master encryption key to both
the user’s credential and the root key from the device.

If an app does not do anything specific to store data, it will be
stored as CE data.

HIGH
Android provides the ability for an app to be aware of the lock
state of the device. This can be obtained through APIs:

https://developer.android.com/reference/android/security/keystor
e/KeyGenParameterSpec.Builder#setUnlockedDeviceRequired(
boolean)
https://developer.android.com/reference/android/security/keystor
e/KeyGenParameterSpec.Builder#setUserAuthenticationRequire
d(boolean)

When combined with the app being able to individually encrypt
its own files:

https://developer.android.com/topic/security/data#java

An app can be developed that can maintain that its data is only
able to be decrypted for use when the user is active on the
device (the device is considered unlocked).

This is an app-specific capability, and so requires an app to be
developed to utilize this capability.

FCS_CKM.4 Devices shall clear plain-text keys when no longer needed.

Supported?
(Y/N)

Describe how keys are cleared from memory (both volatile and
non-volatile).

Note that some of these may not be applicable in all devices (for
example there may be no non-volatile flash memory that is not
wear-leveled), in which case it is sufficient to specify it is not
applicable.

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUnlockedDeviceRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUnlockedDeviceRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUnlockedDeviceRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationRequired(boolean)
https://developer.android.com/topic/security/data#java

FCS_CKM.4.1 The TSF shall destroy keys from the key
hierarchy for Low, Medium, and High cryptographic keys in
accordance with a specified cryptographic key destruction
method [assignment:

● for non-volatile EEPROM, by a single direct overwrite
consisting of a random pattern, using the TSF's RNG,
followed by a read-verify;

● for non-volatile flash memory, that is not wear-levelled,
by [a block erase that erases the reference to memory
that stores data as well as the data itself];

● for non-volatile flash memory, that is wear-levelled, by [a
block erase];

● for non-volatile memory other than EEPROM and flash,
by a single direct overwrite with a random pattern that is
changed before each write];

that meets the following: [no standards]. Y

The TOE clears sensitive cryptographic material (plaintext keys,
authentication data, and other security parameters) from
memory when no longer needed. Public keys can remain in
memory when the phone is locked, but all crypto-related private
keys are evicted from memory upon device lock. No plaintext
cryptographic material resides in the TOE’s Flash as the TOE
encrypts all keys stored in Flash. When performing a full wipe of
protected data, the TOE cryptographically erases the protected
data by clearing the Data-At-Rest DEK. Because the Android
Keystore of the TOE resides within the user data partition, the
TOE effectively cryptographically erases those keys when
clearing the Data-At-Rest DEK. In turn, the TOE clears the Data-
At-Rest DEK and Secure Key Storage SEK through a secure
direct overwrite (BLKSECDISCARD ioctl) of the wear-leveled
Flash memory containing the key followed by a read-verify.

User Data Protection

FDP_ACC.1
/APP_Updat
e

FDP_ACF.1/
APP_Updat
e

FDP_UPF_
EXT.1/APP_
Update

All applications delivered via the app store (distribution platform)
shall provide a means for applications to be updated.

Supported?
(Y/N)

Document the following information about the update process:
● Frequency of automatic checking with the app store
● Method for verifying new updates are available (e.g.

versioning such that older versions cannot be installed as
an update)

● Method for verifying validity of the package (i.e. signature
checks)

FDP_ACC.1.1/APP_Update The TSF shall enforce the
[APP_UPDATE POLICY] on [SUBJECTS: THE TSF, OBJECTS:
APP, APP_UPDATE_PACKAGE, OPERATIONS:
UPDATE_APP].

FDP_ACF.1.1/APP_Update The TSF shall enforce the
[APP_UPDATE POLICY] to objects based on the following:
[SUBJECTS: THE TSF, OBJECTS[ATTRIBUTES]:
APP[VERSION_ID, SIGNATURE],
APP_UPDATE_PACKAGE[VERSION_ID, SIGNATURE,
PACKAGE_SOURCE]].

FDP_ACF.1.2/APP_Update The TSF shall enforce the following
rules to determine if an operation among controlled subjects and
controlled objects is allowed: [

● THE TSF SHALL ALLOW THE TSF TO UPDATE_APP
WITH AN APP_UPDATE_PACKAGE ONLY IF:

○ THE TSF SUCCESSFULLY VERIFIES THE
SIGNATURE OF THE APP_UPDATE_PACKAGE
AND THE SIGNATURE IS FROM THE SAME
APP OR APP DEVELOPER; AND

○ [the version ID of the App_Update_Package is
not lower than the version ID of the installed App];

● THE TSF SHALL UPDATE_APP IN AS AN ATOMIC
UPDATE FUNCTION].

FDP_ACF.1.3/APP_Update The TSF shall explicitly authorize
access of subjects to objects based on the following additional
rules: [no other rules].

FDP_ACF.1.4/APP_Update The TSF shall explicitly deny
access of subjects to objects based on the following additional
rules: [THE TSF SHALL NOT ALLOW ANY TSF-MEDIATED
ACTIONS RELATED TO THE UPDATE_APP OPERATION OR
ACCESS TO THE APP DURING ITS UPDATING].

Y

FDP_UPF_EXT.1.1/APP_Update The TSF shall be able to
check for a [APP] update package every [once a day`1].

The Play Store checks for app updates on a daily basis. Based
on the user settings, the apps will be automatically updated
when the device is not in use or the user will be notified that
updates are available. The user can force a check for updates
(or when notified start the update immediately).

When an app update is available, it will only be installed if the
signature is from the same app developer as the currently
installed version and that the version ID is not lower than the
currently installed version of the app.

When an app is being updated, if the app is currently running,
the instance will be closed during the update process. If the
update fails for any reason, the installation process will roll back
to the version that existed at the time of the download.

FDP_ACC.2
/SSW_Upda
te

FDP_ACF.1/
SSW_Updat
e

FDP_UPF_
EXT.1/SSW
_Update

The device shall support system software updates (i.e. OTA
updates) and secure how they are downloaded and installed.

Supported?
(Y/N)

Document the following information about the update process:
● Frequency of automatic checking with the update

location
● Method for verifying new updates are available (e.g.

versioning such that older versions cannot be installed as
an update)

● Method for verifying validity of the package (i.e. signature
checks)

● How security is maintained during the update process
(i.e. that the system cannot be circumvented during the
update process)

NOTE: The yellow highlight is a modification from GSMA FS.56.

FDP_ACC.2.1/SSW_Update The TSF shall enforce the
[SSW_UPDATE POLICY] on [SUBJECTS: THE TSF,
OBJECTS: THE SSW, SSW_UPDATE_PACKAGE,
OPERATIONS: UPDATE_SSW].

FDP_ACC.2.2/SSW_Update The TSF shall ensure that all
operations between any subject controlled by the TSF and any
object controlled by the TSF are covered by an access control
SFP.

FDP_ACF.1.1/SSW_Update The TSF shall enforce the
[SSW_UPDATE POLICY] to objects based on the following:

Y

[SUBJECTS: THE TSF, OBJECTS[ATTRIBUTES]:
SSW[VERSION_ID, SIGNATURE],
SSW_UPDATE_PACKAGE[VERSION_ID, SIGNATURE,
PACKAGE_SOURCE]].

FDP_ACF.1.2/SSW_Update The TSF shall enforce the
following rules to determine if an operation among controlled
subjects and controlled objects is allowed: [

● THE TSF IS ALLOWED TO PERFORM THE
UPDATE_SSW OPERATION IF THE FOLLOWING
CONDITIONS HOLD:

○ [the SSW_Update_Package[version ID] is not
lower than the SSW[version ID]]

○ THE SSW_UPDATE_PACKAGE[SIGNATURE]
IS VERIFIED BY A DIGITAL SIGNATURE FROM
THE TOE MANUFACTURER STORED ON THE
DEVICE

○ THE SIGNATURE CHECK AND THE
UPDATE_SSW ARE PERFORMED AS AN
ATOMIC UPDATE FUNCTION].

FDP_ACF.1.3/SSW_Update The TSF shall explicitly authorize
access of subjects to objects based on the following additional
rules: [no other rules].

FDP_ACF.1.4/SSW_Update The TSF shall explicitly deny
access of subjects to objects based on the following additional
rules: [THE TSF SHALL NOT ALLOW ANY TSF-MEDIATED
ACTIONS RELATED TO THE UPDATE_SSW FUNCTION
DURING ITS UPDATING].

FDP_UPF_EXT.1.1/SSW_Update The TSF shall be able to
check for a [SYSTEM SOFTWARE] update package every once
per day] and provide a notification to the user when an update is
available.

The device verifies all updates using a public key chaining to the
root public key. The SHA-256 hash of the root public key is
fused into the SoC during manufacturing.

Once the update has been downloaded the version and
signature are checked to ensure the version is not older than the
current version and that the signature is valid (verified to the
hardware hash).

https://source.android.com/docs/core/ota/ab

If the checks complete successfully the update process begins
immediately where the update will be installed on the slot

https://source.android.com/docs/core/ota/ab

(partition) that is not currently in use (i.e. the one that was not
used to boot the device at this time). Once the update has been
completely written to the slot, the update process will switch the
active slot to the one just updated and restart the device (with
user permission). If the reboot is not successful the system will
automatically switch back to the previous slot and restart again,
returning the device to the previous state.

If the checks, write process or reboot fail at any time during this
sequence, the system will remain/revert to the OS version that
existed prior to the update being downloaded, such that the
update process happens completely or not at all.

The device checks for updates on a daily basis (once every 24
hours) to the update server. When an update is found the user
will be notified to download the update. The user can also check
to automatically install the update at a later time (or set to be
notified again later).

FDP_ACC.2
/Permission
s

FDP_ACF.1/
Permission
s

Devices shall provide access controls (permissions) to
components on the system and provide the user with the
opportunity to grant or block access to these components to any
application or if permissions are specifically granted by the
device (i.e. in the operating system the application has specific
privileges already).

This is divided into what the user can explicitly control and what
the OS controls. Supported?

(Y/N) Document the following:
● List of user permissions (i.e. camera, microphone,

contacts)
● List of OS permissions (i.e. Device ID, system

permissions, sockets/IPC, files)
● How permissions are granted (including for pre-installed

applications where it is granted without user interaction)
● How access is determined (allow/block)
● SELinux is the basis for these permissions and controls

FDP_ACC.2.1/Permissions The TSF shall enforce the
[PERMISSIONS POLICY] on [

● SUBJECTS: APPS, PROCESSES;
● USER OBJECTS: [camera, microphone, location,

contacts, calendar, call log, stored pictures, text
messages, the list of installed apps];

Y

● MANUFACTURER OBJECTS: DEVICE ID, SYSTEM
PERMISSIONS, FILES (INCLUDING INDIVIDUAL APP
DATA), [secure sockets, IPC];

● OPERATIONS: READ, WRITE, EXECUTE].

FDP_ACC.2.2/Permissions The TSF shall ensure that all
operations between any subject controlled by the TSF and any
object controlled by the TSF are covered by an access control
SFP.

FDP_ACF.1.1/Permissions The TSF shall enforce the
[PERMISSIONS POLICY] to objects based on the following: [

● [APPS AND PROCESSES] AND THE OPERATIONS
ASSOCIATED WITH THE SUBJECT;

● THE ACCESS CONTROL LIST ASSOCIATED WITH
THE OBJECT BEING REQUESTED].

FDP_ACF.1.2/Permissions The TSF shall enforce the following
rules to determine if an operation among controlled subjects and
controlled objects is allowed: [

● THE SUBJECT, OR A GROUPING THE SUBJECT IS
MAPPED TO, IS EXPLICITLY GRANTED PERMISSION
BY THE USER OR TOE MANUFACTURER TO THE
USER OBJECT IN THE ACCESS CONTROL LIST].

FDP_ACF.1.3/Permissions The TSF shall explicitly authorize
access of subjects to objects based on the following additional
rules: [

● THE SUBJECT IS GRANTED PERMISSION BY THE
TOE MANUFACTURER TO THE MANUFACTURER
OBJECT IN THE ACCESS CONTROL LIST].

FDP_ACF.1.4/Permissions The TSF shall explicitly deny
access of subjects to objects based on the following additional
rules: [

● THE SUBJECT IS EXPLICITLY BLOCKED BY THE
USER FROM ACCESSING THE USER OBJECT;

● THERE IS NO RULE GRANTING THE SUBJECT
ACCESS TO THE USER OR MANUFACTURER
OBJECT IN THE ACCESS CONTROL LIST].

The TOE provides the following categories of system services to
applications.

1. Normal - A lower-risk permission that gives an
application access to isolated application-level features,

with minimal risk to other applications, the system, or the
user. The system automatically grants this type of
permission to a requesting application at installation,
without asking for the user's explicit approval (though the
user always has the option to review these permissions
before installing).

2. Dangerous - A higher-risk permission that would give a
requesting application access to private user data or
control over the device that can negatively impact the
user. Because this type of permission introduces
potential risk, the system cannot automatically grant it to
the requesting application. For example, any dangerous
permissions requested by an application will be
displayed to the user and require confirmation before
proceeding or some other approach can be taken to
avoid the user automatically allowing the use of such
facilities.

3. Signature - A permission that the system is to grant only
if the requesting application is signed with the same
certificate as the application that declared the
permission. If the certificates match, the system
automatically grants the permission without notifying the
user or asking for the user's explicit approval.

4. SignatureOrSystem - A permission that the system is to
grant only to packages in the Android system image or
that are signed with the same certificates. Please avoid
using this option, as the signature protection level should
be sufficient for most needs and works regardless of
exactly where applications are installed. This permission
is used for certain special situations where multiple
vendors have applications built in to a system image
which need to share specific features explicitly because
they are being built together.

An example of a normal permission is the ability to vibrate the
device: android.permission.VIBRATE. This permission allows an
application to make the device vibrate, and an application that
does not request (or declare) this permission would have its
vibration requests ignored.

An example of a dangerous privilege would be access to
location services to determine the location of the mobile device:
android.permission.ACCESS_FINE_LOCATION. The TOE
controls access to Dangerous permissions during the running of
the application. The TOE prompts the user to review the
application’s requested permissions (by displaying a description
of each permission group, into which individual permissions

map, that an application requested access to). If the user
approves, then the application is allowed to continue running. If
the user disapproves, the devices continues to run, but cannot
use the services protected by the denied permissions.
Thereafter, the mobile device grants that application during
execution access to the set of permissions declared in its
Manifest file.

An example of a signature permission is the
android.permission.BIND_VPN_SERVICE that an application
must declare in order to utilize the VpnService APIs of the
device. Because the permission is a Signature permission, the
mobile device only grants this permission to an application (2nd
installed app) that requests this permission and that has been
signed with the same developer key used to sign the application
(1st installed app) declaring the permission (in the case of the
example, the Android Framework itself).

An example of a signatureOrSystem permission is the
android.permission.LOCATION_HARDWARE, which allows an
application to use location features in hardware (such as the
geofencing API). The device grants this permission to requesting
applications that either have been signed with the same
developer key used to sign the Android application declaring the
permissions or that reside in the “system” directory within
Android (which for Android 4.4 and above, are applications
residing in the /system/priv-app/ directory on the read-only
system partition). Put another way, the device grants
systemOrSignature permissions by Signature or by virtue of the
requesting application being part of the “system image”.

Additionally, Android includes the following flags that layer atop
the base categories.

1. privileged - this permission can also be granted to any
applications installed as privileged apps on the system
image. Please avoid using this option, as the signature
protection level should be sufficient for most needs and
works regardless of exactly where applications are
installed. This permission flag is used for certain special
situations where multiple vendors have applications built
into a system image which need to share specific
features explicitly because they are being built together.

2. system - Old synonym for 'privileged'.
3. development - this permission can also (optionally) be

granted to development applications (e.g., to allow
additional location reporting during beta testing).

4. appop - this permission is closely associated with an app
op for controlling access.

5. pre23 - this permission can be automatically granted to
apps that target API levels below API level 23
(Marshmallow/6.0).

6. installer - this permission can be automatically granted to
system apps that install packages.

7. verifier - this permission can be automatically granted to
system apps that verify packages.

8. preinstalled - this permission can be automatically
granted to any application pre-installed on the system
image (not just privileged apps) (the TOE does not
prompt the user to approve the permission).

For older applications (those targeting Android’s pre-23 API
level, i.e., API level 22 [lollipop] and below), the TOE will prompt
a user at the time of application installation whether they agree
to grant the application access to the requested services.
Thereafter (each time the application is run), the TOE will grant
the application access to the services specified during install.

For newer applications (those targeting API level 23 or later), the
TOE grants individual permissions at application run-time by
prompting the user for confirmation of each permissions
category requested by the application (and only granting the
permission if the user chooses to grant it).

The Android 15 (Level 35) API (details found here
https://developer.android.com/reference/packages) provides
services to mobile applications.

These permissions can be tested using an application built using
code that can be found at https://github.com/android/security-
certification-resources/tree/master/niap-cc/Permissions.

While Android provides a large number of individual
permissions, they are generally grouped into categories or
features that provide similar functionality.

Below what the user can directly manage through the UI as
permissions, Android uses SELinux in enforcing mode for
Mandatory Access Control (and all permission policies are
implemented as SELinux policies, just exposed in a more user-
friendly way). The SELinux policies can be found on the device
using the command:

adb pull /sys/fs/selinux/policy

https://developer.android.com/reference/packages
https://github.com/android/security-certification-resources/tree/master/niap-cc/Permissions
https://github.com/android/security-certification-resources/tree/master/niap-cc/Permissions
https://source.android.com/docs/security/features/selinux

This is the compiled policy file that is enforced on the device and
contains all the settings.

AOSP defines a number of highly dangerous SELinux controls
(DAC_OVERRIDE, NET_ADMIN and SYS_ADMIN) and
associates them to services that require those controls. These
can be found in the AOSP source in the private and public
folders.

FDP_ACC.1
/UserDataA
sset

FDP_ACF.1/
UserDataAs
set

Data stored on the device is protected with different
classifications (DE/CE). Supported?

(Y/N) Describe how user data is protected and how it is classified on
the system. DE/CE is sufficient to meet the Low/Medium
differences. Explain how High can be implemented.

FDP_ACC.1.1/UserDataAsset The TSF shall enforce the
[USER DATA ASSET DECRYPTION POLICY] on [

● SUBJECTS: THE TSF;
● OBJECTS: INTERNAL STORAGE (ALL SAVED USER

DATA ASSETS), [no other storage];
● OPERATIONS: DECRYPT].

FDP_ACF.1.1/UserDataAsset The TSF shall enforce the
[USER DATA ASSET DECRYPTION POLICY] to objects based
on the following: [SUBJECTS: THE TSF, OBJECTS: USER
DATA ASSETS, ATTRIBUTES: SENSITIVE LEVEL OF
OBJECTS, LOW, MEDIUM, HIGH].

FDP_ACF.1.2/UserDataAsset The TSF shall enforce the
following rules to determine if an operation among controlled
subjects and controlled objects is allowed: [

● THE TSF IS ALLOWED TO DECRYPT LOW USER
DATA ASSETS IF AND ONLY IF THE TOE IS
SUCCESSFULLY POWERED ON; AND

● THE TSF IS ALLOWED TO DECRYPT MEDIUM USER
DATA ASSETS IF AND ONLY IF THE TOE IS
SUCCESSFULLY POWERED ON AND THE USER IS
SUCCESSFULLY AUTHENTICATED DURING THE
FIRST AUTHENTICATION AFTER POWER ON; AND

● THE TSF IS ALLOWED TO DECRYPT HIGH USER
DATA ASSETS IF AND ONLY IF THE TOE IS
SUCCESSFULLY POWERED ON, THE USER IS

Y

https://cs.android.com/android/platform/superproject/main/+/main:system/sepolicy/private/
https://cs.android.com/android/platform/superproject/main/+/main:system/sepolicy/public/

SUCCESSFULLY AUTHENTICATED AND THE
SCREEN OF THE TOE IS NOT LOCKED].

FDP_ACF.1.3/UserDataAsset The TSF shall explicitly authorize
access of subjects to objects based on the following additional
rules: [NO ADDITIONAL RULES].

FDP_ACF.1.4/UserDataAsset The TSF shall explicitly deny
access of subjects to objects based on the following additional
rules: [NO ADDITIONAL RULES].

The device provides different classes of storage for all user data.
By default all user data is protected with a key that is derived
from the user’s password (this is considered Medium protection).
The device only supports internal storage.

For Low data, an application must be explicitly developed to take
advantage of this feature which will allow data saved by the app
as DE data to be available on reboot before the user has
authenticated.

For High data, an application must be explicitly developed to be
aware of the lock status of the device to be able to close and
lock its data. Android APIs provide the ability to hook into the
notification of the lock status to enable this functionality.

In all cases, keys that are stored on the device are entangled
with the hardware root key (in the case of Low, this is combined
with a hardcoded device key to take the place of the user’s
password). This ensures that data cannot be ported to another
device and decrypted as only the device where the data is
encrypted will have access to the hardware key used to
generate the encryption key.

Identification and Authentication

FIA_UAU.1

FIA_UID.1

When authentication is enabled, some actions may be
performed before a successful login. Supported?

(Y/N) Document what actions are allowed before a successful login.
Access to stored data shall not be allowed (i.e. access to CE
data)

FIA_UAU.1.1 The TSF shall allow [

● Take screen shots (stored internally)
● Make emergency calls
● Receive calls
● Take pictures (stored internally) - unless the camera was

disabled
● Turn the TOE off
● Restart the TOE
● Place TOE into lockdown mode
● Enable Airplane mode
● Change the state of Wi-Fi, Bluetooth, Mobile Data

(cellular data)
● Change Battery Saver mode
● Adjust screen brightness
● See notifications (note that some notifications identify

actions, for example to view a screenshot; however,
selecting those notifications highlights the password
prompt and require the password to access that data)

● Configure sound, vibrate, or mute
● Set the volume (up and down) for ringtone
● Change keyboard input method
● Change live captions
● Access notification widgets (without authentication):

○ Flashlight toggle
○ Do not disturb toggle
○ Auto rotate toggle
○ Sound (on, mute, vibrate)
○ Night light filter toggle

] on behalf of the user to be performed before the user is
authenticated.

FIA_UAU.1.2 The TSF shall require the user to be successfully
authenticated before allowing any other TSF‑mediated actions
on behalf of that user.

FIA_UID.1.1 The TSF shall allow [

● Take screen shots (stored internally)
● Make emergency calls

Y

● Receive calls
● Take pictures (stored internally) - unless the camera was

disabled
● Turn the TOE off
● Restart the TOE
● Place TOE into lockdown mode
● Enable Airplane mode
● Change the state of Wi-Fi, Bluetooth, Mobile Data

(cellular data)
● Change Battery Saver mode
● Adjust screen brightness
● See notifications (note that some notifications identify

actions, for example to view a screenshot; however,
selecting those notifications highlights the password
prompt and require the password to access that data)

● Configure sound, vibrate, or mute
● Set the volume (up and down) for ringtone
● Change keyboard input method
● Change live captions
● Access notification widgets (without authentication):

○ Flashlight toggle
○ Do not disturb toggle
○ Auto rotate toggle
○ Sound (on, mute, vibrate)
○ Night light filter toggle

] on behalf of the user to be performed before the user is
identified.

FIA_UID.1.2 The TSF shall require each user to be successfully
identified before allowing any other TSF-mediated actions on
behalf of that user.

The following actions can be taken before the user has
authenticated to the device:

● Take screen shots (stored internally)
● Make emergency calls
● Receive calls
● Take pictures (stored internally) - unless the camera was

disabled
● Turn the TOE off
● Restart the TOE
● Place TOE into lockdown mode
● Enable Airplane mode
● Change the state of Wi-Fi, Bluetooth, Mobile Data

(cellular data)
● Change Battery Saver mode
● Adjust screen brightness
● See notifications (note that some notifications identify

actions, for example to view a screenshot; however,

selecting those notifications highlights the password
prompt and require the password to access that data)

● Configure sound, vibrate, or mute
● Set the volume (up and down) for ringtone
● Change keyboard input method
● Change live captions
● Access notification widgets (without authentication):

○ Flashlight toggle
○ Do not disturb toggle
○ Auto rotate toggle
○ Sound (on, mute, vibrate)
○ Night light filter toggle

All other actions require the user to be authenticated.

FIA_UAU.5/
Local

Multiple methods of authentication may be supported.

Supported?
(Y/N)

Describe the methods of authentication that are provided
including any biometric modalities or external devices that may
be supported.

Describe the ordering for how multiple methods may be used at
one time (for example if fingerprint is enabled, how does the
device decide whether to ask for the fingerprint or PIN).

FIA_UAU.5.1/Local The TSF shall provide [PASSWORD, PIN
and pattern, BAF in accordance with the PP-Module for
Biometrics Authentication] to support user authentication.

FIA_UAU.5.2/Local The TSF shall authenticate any user's
claimed identity according to the [following rules:

To authenticate unlocking the device immediately after boot (first
unlock after reboot):

● User passwords are required after reboot to unlock the
user's Credential encrypted (CE files) and keystore keys.
Biometric authentication is disabled immediately after
boot.

To authenticate unlocking the device after device lock (not
following a reboot):

● The TOE verifies user credentials (password or
fingerprint) via the gatekeeper or fingerprint trusted
application (running inside the Trusted Execution
Environment, TEE), which compares the entered
credential to a derived value or template.

Y

To change protected settings or issue certain commands:

● The TOE requires password after a reboot, when
changing settings (Screen lock, Fingerprint, and Smart
Lock settings), and when factory resetting.

].

The device supports the use of a password, PIN, pattern and
fingerprint for authentication.

When the device is first started (or restarted), the biometric
cannot be used for authentication until after a password, pattern
or PIN has been entered first.

The fingerprint is offered as the default authentication
mechanism as it can be entered without fully waking the screen.

FIA_UAU.5/Peer
This is for functionality that is provided with the device from the developer and does not include
apps that may be downloaded by the user after purchase.

FIA_UAU.5/
Peer

When connecting to a peer device or a service, the user shall
successfully authenticate before the connection is allowed.

Supported?
(Y/N)

Document the methods for connecting to:
● peer-to-peer device connections

○ Bluetooth pairing methods are handled in
FTP_ITC_EXT.1/BT and not necessary here

● Other services
○ For example backup/sync services using a

trusted server
○ Screen mirroring/sharing

For other services, specify what is allowed after the successful
pairing

FIA_UAU.5.1/Peer The TSF shall provide support to use [[QR
codes, NFC labels, using a common user account to a remote
service on both devices] for to support user authentication to
peer devices before allowing any actions on behalf of the
user.

FIA_UAU.5.2/Peer The TSF shall authenticate any user's peer
device’s claimed identity according to the [QR codes can
provide Wi-Fi information, NFC labels can provide pairing
information for Bluetooth connections, Accounts on the device
can be used to sign in to remote services].

Y

The device provides the following ways to authenticate
connections to peer devices/services:

● QR codes - these can be used to add Wi-Fi information
to connect to an AP

○ Note that QR codes can be read automatically by
the camera, but by default are handed to the web
browser and are not tied to the device itself

● NFC labels - these can be used to provide connectivity
for pairing to Bluetooth devices

● Apps can register accounts (seen in Settings ->
Passwords & accounts) that can be used to connect to
remote services (such as a mail server or other cloud
service). These require the user to enter a valid
username/password combination on the device that
matches an account on the service being connected to.

FIA_UAU.6 The user needs to be re-authenticated to perform specific
actions (this is specifically after the initial authentication to
unlock the device after a bootup/startup).

Supported?
(Y/N)

Document what actions require authentication:
● Unlocking the device after it has become locked

(mandatory)
● Change of authentication data (any change) (mandatory)
● Other conditions?

FIA_UAU.6.1 The TSF shall re-authenticate the user under the
conditions [

● ATTEMPTED CHANGE OF ANY USER
AUTHENTICATION FACTOR;

● ATTEMPTED UNLOCKING OF A LOCKED TOE;
● [no other conditions]].

Y The device requires the user to enter their password or supply
their biometric in order to unlock the device. Additionally the
device requires the user to confirm their current password when
accessing the

Settings -> Security -> Screen lock

menu in the user interface. Only after entering their current user
password can the user then elect to change their password.

FIA_UAU.7 The user should see only limited feedback during authentication
is in progress Supported?

(Y/N) Describe what feedback is provided to the user during
authentication, such as password/PIN display (how long before
masking).

FIA_UAU.7.1 The TSF shall provide only [BRIEF FEEDBACK
ABOUT THE ENTERED CREDENTIALS] to the user while the
authentication is in progress.

Y
The device allows the user to enter the user's password from the
lock screen. The device will display the most recently entered
character of the password briefly or until the user enters the next
character in the password, at which point the device obscures
the character by replacing the character with a dot symbol.
Further, the device provides no feedback other than whether the
fingerprint unlock attempt succeeded or failed.

FIA_SOS.1 The user shall be able to set credentials of a minimum strength
Supported?

(Y/N)
Document the minimum/maximum requirements for
password/PIN/pattern settings for the user and specify the
character set used for a password.

FIA_SOS.1.1 The TSF shall provide a mechanism to verify that
secrets meet [

● FOR PASSWORD AND PIN: LENGTH 4 OR MORE
FROM A DEFINED CHARACTER SET;

● FOR PATTERNS: CONSISTS OF AT LEAST 4 FROM A
SET OF AT LEAST 9 AVAILABLE POINTS, WHERE
EACH POINT SHALL ONLY BE USED ONCE].

Y
The minimum length for any password or PIN is 4
characters/numbers. Passwords consist of basic Latin
characters (upper and lower case, numbers, and the following
special characters:

! @ # $ % ^ & * () [= + - _ ` ~ \ |] } [{ ‘ “ ; : / ? . > , <

The maximum length for a password or PIN is 16
characters/numbers.

For a pattern the user must trace a pattern that touches at least
4 individual points from the 9 available.

FIA_AFL.1 When repeated authentication attempts are detected, the device
should deter continued attempts. This includes all available
authentication methods. Supported?

(Y/N) Document what actions are taken when some number of
attempts have been detected (between 3-10).

FIA_AFL.1.1 The TSF shall detect when [AN INTEGER
BETWEEN 3 AND 10] unsuccessful authentication attempts
occur related to [Password, PIN, Pattern, BAF in accordance
with the PP-Module for Biometrics Authentication].

FIA_AFL.1.2 When the defined number of unsuccessful
authentication attempts has been [MET], the TSF shall [

● Block the biometric use after 5 unsuccessful attempts
● Require a 30 second delay after 5 unsuccessful non-

biometric attempts, and then again after 10 total attempts
● Additional attempts past 11 will have at least a 30

second delay on every attempt (eventually growing to a
day between attempts)].

Y

The device maintains in persistent storage the number of failed
authentication attempts since the last login.

The Gatekeeper code for calculating the delay is here (written
below based on the number of attempts taken).

[0, 4] -> 0
5 -> 30
[6, 10] -> 0
[11, 29] -> 30
[30, 139] -> 30 * (2^((x - 30)/10))
[140, inf) -> 1 day

Every 5 consecutive failed attempts the device will force the user
to wait for a period of time before further attempts (starting at 30
seconds and then doubling in time). Every 10 attempts it also
requires the device to reboot to perform further attempts.

Biometric authentication can be attempted up to 5 times before
the biometric is disabled and the user can only use a password,
PIN or pattern to authenticate.

When biometrics are enabled, they can be used once the screen
wakes up. Entering a password, PIN or pattern requires an
additional swipe of the screen to activate the sign in dialog to
enter the credential.

https://cs.android.com/android/platform/superproject/+/master:system/gatekeeper/gatekeeper.cpp?q=%22calculates%20the%20timeout%20in%20milliseconds%22&ss=android%2Fplatform%2Fsuperproject

Upon successful authentication the failure count is reset to 0.

Security Management

FMT_MSA.1
/Permission
s

FMT_MSA.3
/Permission
s

The user shall be able to manage the user permissions on the
available objects. The default policy if no permission is assigned
should be restrictive. Supported?

(Y/N) Document what the user can do in setting permissions for
access (approve/reject persistently or temporarily, etc)

FMT_MSA.1.1/Permissions The TSF shall enforce the
[PERMISSIONS POLICY] to restrict the ability to [approve
persistently, approve temporarily, reject persistently, reject
temporarily, modify] the security attributes [LIST OF USER
OBJECTS] to [THE CURRENT USER FOR THEIR OWN
PERMISSIONS].

FMT_MSA.3.1/Permissions The TSF shall enforce the
[PERMISSIONS POLICY] to provide [RESTRICTIVE] default
values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/Permissions The TSF shall allow the
[CURRENT USER FOR THEIR OWN PERMISSIONS] to specify
alternative initial values to override the default values when an
object or information is created.

Y

The user can manage the permissions for an application based
on 9 different groups of permissions.

Applications that are preloaded (or that are part of the system)
are assigned permissions by Google to ensure the functionality
of the device (but are not assigned more permissions than are
necessary for the function of the app).

Apps that are installed by the user are assigned no permissions
during the installation. The permissions that are needed by the
app (some apps may not require any permissions) will be
requested on first use. At that time the user can choose to allow
continued access, allow access only for that time, or to reject
granting access to the permissions. If the user granted access
only once, the user will continue to be prompted every time the
app is run to allow access to that permission.

Permissions for an app can be modified after they have initially
been set through

Settings -> Apps -> <app in question>

https://m2.material.io/design/platform-guidance/android-permissions.html#usage

Here the user can choose to change the permissions that have
been granted (or rejected).

FMT_SMF.1
/Authentica
tion

The user shall be able to specify and later change their
authentication credentials Supported?

(Y/N) Document how the user can set and change the
password/PIN/pattern/biometric

FMT_SMF.1.1/Authentication The TSF shall be capable of
performing the following management functions: [

● entering an initial or changing (including removal of) the
KAF].

Y
The user can change their authentication credentials through

Settings -> Security & privacy -> Device lock

From here the user can choose Screen lock or Fingerprint
Unlock to change their credentials (set, remove, modify, etc).

Setting a fingerprint will require the user to also set a password,
PIN or pattern.

FMT_SMF.1
/Permission
s

The user shall be able to manage the permissions provided to
apps and some system services Supported?

(Y/N) ● Document how the user can view, grant and revoke
permissions for any app

FMT_SMF.1.1/Permissions The TSF shall be capable of
performing the following management functions: [

● VIEW PERMISSIONS GRANTED TO AN APP; AND

● GRANT/REVOKE PERMISSION TO/FROM AN APP OR
PROCESS TO HAVE READ AND/OR WRITE ACCESS
TO A USER OBJECT].

Y

See FMT_MSA.1/3 answers

The user shall be able to manage various settings on the device

FMT_SMF.1
/UserContr
ols

● Document the settings for accessibility service,
notifications

● Document how the user can set the default USB mode
when connecting to a computer

● Removable media encryption

Supported?
(Y/N)

FMT_SMF.1.1/UserControls The TSF shall be capable of
performing the following management functions: [

● GRANT/REVOKE PERMISSION TO/FROM AN APP OR
PROCESS TO HAVE ACCESS TO ACCESSIBILITY
SERVICE; AND

● GRANT/REVOKE PERMISSION TO/FROM AN APP OR
PROCESS TO HAVE ACCESS TO DEVICE
NOTIFICATION; AND

● [charge only mode by default, file transfer mode] WHEN
THE TOE IS CONNECTED VIA THE WIRED
CHARGING INTERFACE TO ANOTHER DEVICE; AND

● [no support for removable media]; and
● [no other functions]].

Y
The user can manage apps that can access the accessibility
service through:

Settings -> Accessibility

The user can manage the notifications (which apps can provide
notifications, access to read notifications, whether they can be
seen on the lock screen) through:

Settings -> Notifications

The user can manage USB connectivity to another device (such
as a PC) through the USB preferences. By default the selection
is to not transfer data over the connection. This option becomes
available when the device is connected to another device, at
which point these settings can be adjusted for the connection.

The device does not support removable media

FMT_SMF.1
/Privacy

The user shall be able to change the alias used as an identifier
for ads and developers Supported?

(Y/N) Document how the user can change the alias (or disable it).

FMT_SMF.1.1/Privacy The TSF shall be capable of performing
the following management functions: [Y

● change or reset the privacy aliases;
● block the creation/use of a unique ID for advertising (no

personalized tracking)].

The user can access the advertising controls in:

Settings -> Security & privacy -> More privacy settings ->
Ads

Here the user can reset the advertising ID or delete it
completely. If the ID is deleted then personalized tracking can be
disabled.

The user generally does not have access to identifiers that have
been requested by an app. Some apps may provide this
information internally, but this is a developer choice. If the user
wants to reset the identifier (or delete it), they can delete the app
(or clear all storage for the app, which would remove all
associated app data). This will delete the local identifier such
that the user would be able to have a new identifier created the
next time the app is run.

FMT_SMF.1
/APP_Updat
e

The user shall be able to manage applications on the device
(update/uninstall) Supported?

(Y/N) Describe how application updates can be initiated and how apps
(including pre-installed) can be uninstalled.

FMT_SMF.1.1/APP_Update The TSF shall be capable of
performing the following management functions: [assignment:

● SPECIFY TO [notify the user without downloading,
automatically install] WHEN AN AUTOMATIC CHECK
TO THE ADP HAS FOUND AN UPDATE; AND

● INITIATE AN IMMEDIATE CHECK FOR UPDATE; AND
● INITIATE AN UPDATE OF THE APP (IF AVAILABLE);

AND
● DISPLAY THE VERSION NUMBER OF THE APP; AND
● UNINSTALL DOWNLOADED APPS (INCLUDING APPS

DOWNLOADED AS PART OF THE SETUP
PROCESS)].

Y

Through the Play Store the user can manage the apps they
download to the device. The Play Store allows the user to install
apps, check for updates, and uninstall apps. The Play Store
checks for updates to the installed apps roughly once per day to
see if there are new versions to be installed. In general the apps

will be updated automatically, though if there are permission
changes to the new version, the user will be required to approve
the installation of the new version.

The user can check the version number of any app on the
device through:

Settings -> Apps -> <app in question>

The app version will be displayed at the bottom of the
information.

The user can also uninstall any app (that can be uninstalled) in
the same Settings page by clicking the Uninstall button for the
app.

FMT_SMF.1
/SSW_Upda
te

The user shall be able to check for system software updates Supported?
(Y/N) Describe how the user can check for new system software

updates and how they can be installed.

FMT_SMF.1.1/SSW_Update The TSF shall be capable of
performing the following management functions: [assignment:

●
● SPECIFY TO [notify the user without downloading,

automatically install] WHEN AN AUTOMATIC CHECK
TO THE TRUSTWORTHY UPDATE SOURCE HAS
FOUND AN UPDATE; AND

● INITIATE AN IMMEDIATE CHECK FOR UPDATE; AND
● INITIATE AN UPDATE OF THE SYSTEM SOFTWARE

(IF AVAILABLE); AND
● PROVIDE THE STATUS OF THE UPDATE PROCESS

AND THE RESULTS OF THE UPDATE; AND
● [delay temporarily] AUTOMATIC INSTALLATION OF

SYSTEM SOFTWARE UPDATES; AND
● DISPLAY THE VERSION NUMBER OF THE SYSTEM

SOFTWARE].

Y

The user can check for new updates by going to:

Settings -> System -> System Update

This location also shows the installation status/progress of the
update (until the reboot to switch to the updated version).

The user is able to temporarily delay the installation of an update
when presented with the option to to download it. After 3 delays
the user will be forced to update the device.

This screen also shows the current version of the system
software, stating the Android version and the security update
version.

Privacy

FPR_PSE.1 Advertisers and app developers shall be provided a unique
device identifier that can be modified by the user. Supported?

(Y/N) Describe how the unique identifier is provided and how this can
be changed by the user.

FPR_PSE.1.1/Advertisers The TSF shall ensure that [AD
NETWORKS] are unable to determine access the real user
name Device ID bound to [THE TOE (HARDWARE
PLATFORM)] according to the Permissions Policy.

FPR_PSE.1.2/Advertisers The TSF shall be able to provide [AT
LEAST ONE UNIQUE] alias(es) of the real user name Device ID
to [AD NETWORKS].

FPR_PSE.1.3/Advertisers The TSF shall [DETERMINE AN
ALIAS FOR A DEVICE ID] and verify that it conforms to the
[assignment: alias metric].

FPR_PSE.1.1/APP_Dev The TSF shall ensure that [APP
DEVELOPERS] are unable to determine access the real user
name Device ID bound to [THE TOE (HARDWARE
PLATFORM)] according to the Permissions Policy.

FPR_PSE.1.2/APP_Dev The TSF shall be able to provide [AT
LEAST ONE UNIQUE] alias(es) of the real user name Device ID
to [EACH APP DEVELOPER].

FPR_PSE.1.3/APP_Dev The TSF shall [PROVIDE AN ALIAS
FOR A DEVICE ID] and verify that it conforms to the
[assignment: alias metric] upon request by the App developer.

Y

The device provides a single identifier for advertisers to use.
This identifier is not tied to the hardware (it is not derived from
any hardware identifiers) and is randomly generated. Advertisers
are not able to access unique hardware identifiers through the

access control permissions on access to them (such as the
IMEI).

The advertiser identifier string can be seen by the user in:

Settings -> Security & privacy -> More privacy settings ->
Ads

App developers can have unique identifiers generated for them
by the system to enable identification of the device tied to the
user within their services. The unique identifier for the app is
randomly generated and not tied to the hardware unique
identifiers in any way.

Each app developer can request an identifier (a developer with
multiple apps may utilize the same identifier across all apps, that
is a developer choice).

An app developer can use the API randomUUID to request a
random identifier.

https://developer.android.com/reference/java/util/UUID#randomUUID()
https://developer.android.com/reference/java/util/UUID#randomUUID()

Protection of the TSF

FPT_PHP.3 OEMs and ODMs shall provide a hardware-backed key store
implemented within a SEE, Secure Element or equivalent
solution.
Plaintext private key material shall not exist outside of the
hardware-backed key store.

Supported?
(Y/N)

Provide documentation on the hardware-backed credential
storage capabilities of the device, as well as the specific
configurations.

FPT_PHP.3.1 The TSF shall resist [to:

● READ OR MODIFY THE DUK; AND
● READ OR MODIFY [no keys (keys are not stored

unencrypted)]; AND
● MODIFY [hashes of keys] USED TO VERIFY THE

INTEGRITY OF THE TSF IN FPT_TST.1; AND
● MODIFY [hashes of keys] USED TO VERIFY THE

INTEGRITY AND AUTHENTICITY OF UPDATES TO
THE TSF IN FCS_COP.1/ASYMMETRIC; AND

● READ OR MODIFY [no other keys]];

to the [HARDWARE BASED SECURE ENVIRONMENT OF
THE TSF] by responding automatically such that the SFRs are
always enforced it is impossible to read or modify this data
and/or key(s).

 Y
The device provides multiple hardware-based storage locations
for keys to maintain confidentiality and integrity.

The DUK is stored in one-time fuses in the AP itself. These are
never read directly by anything outside a security subsystem
included in the AP.

The DUK is used in the TEE (Trusty 9004426), but not directly.
The TEE requests actions related to the key to be performed
(such as to encrypt or decrypt another key) to the AP subsystem
which then performs the action and returns the encrypted result.

This ensures that the DUK cannot be accessed outside the AP
hardware. Direct reading of the DUK would require knowing the
physical location within the AP and non-destructively being able
to read the individual fuses.

Android provides the Keystore to securely store all keys inside
the TEE. All keys will be encrypted with a key tied to the DUK,
and where appropriate, the user’s password (some keys are
only protected by the DUK, such as Wi-Fi keys, so they are
accessible before the user has authenticated, and is determined
by the app/process storing the key). Not all keys are stored and
may be derived as needed (such as those tied to the user’s
credentials).

The device also provides support for the StrongBox Keystore.
StrongBox utilizes the Titan M2 chip to provide a separate
hardware keystore (similar to a secure element, but more like a
secure processor unit) which has been certified. Apps and
processes can use this to store keys instead of just placing them
into the TEE Keystore. Access to StrongBox is through the
normal Keystore API with a separate flag to note that the key
must be stored in dedicated hardware.

FPT_FLS.1 A failure in the system software update shall not expose user
data.

Supported?
(Y/N)

Describe how a failure of the update process is managed. For
example, an automatic rollback, or some other process which
would allow the user to restore the system but which would not
expose any encrypted user data.

FPT_FLS.1.1 The TSF shall preserve a secure state when the
following types of failures occur: [FAILURE OF THE
UPDATE_THE_TOE_SOFTWARE OPERATION IN
FDP_ACF.1/SSW_UPDATE].

Y

All user data on the device is encrypted. Except for data that is
not encrypted with the user’s credentials (DE data), user data
cannot be decrypted without a successful user authentication.
So a failure to update the system software cannot unlock the
user data as the new system would not be able to properly start
(the failure).

The device maintains two boot slots for the system. Only one is
active at a time, and the alternate slot is used to update the
device. If the update process fails at any point (such as during
the write operation or upon reboot the system cannot
successfully start and the user authenticates), the system will
revert to the original boot slot and return to the previous version
of Android (the version running at the time the update was
downloaded).

https://www.tuv-nederland.nl/assets/files/cerfiticaten/2022/09/nscib-cc-0228971-cr-final.pdf

FPT_TST.1 During the device start-up process, the integrity of the system
software shall be verified.

Supported?
(Y/N)

Different tests are allowed for different types of checks. For
example:

● Cryptographic algorithms can run self-tests (RBG can
verify output)

● Bootloader and other system checks using hash trees,
signatures (or hashes)

FPT_TST.1.1 The TSF shall run a suite of self-tests and
integrity verification [DURING INITIAL START-UP] to
demonstrate the correct operation of [[cryptographic checks on
the algorithm tests in BoringSSL, integrity test of BoringSSL and
entropy health checks from SP800-90B on the hardware noise
source]] BY SELF TESTS AND THE BOOTLOADER, MAIN OS
KERNEL [SEE, executable code stored in /system and /vendor
partitions] BY INTEGRITY, WHERE INTEGRITY IS VERIFIED
BY [a hash of an asymmetric key].

FPT_TST.1.2 The TSF shall provide authorised users with the
capability to verify the integrity [NO DATA].

FPT_TST.1.3 The TSF shall provide authorised users with the
capability to verify the integrity of [NONE].

Y

The device runs a number of self-tests on specific components
to ensure they are properly functioning during the start-up.
Failure of these tests will cause the boot sequence to halt and a
Boot Failure message will be shown.

The tests run are:

● Algorithm tests on BoringSSL (AES, SHA, HMAC,
DRBG, ECDSA, RSA ECDH)

● Self-test on BoringSSL (module integrity after load)
● Entropy health tests (from the SoC) based on SP 800-

90B

These tests are run every time the component is started. For
example, each time BoringSSL is loaded into memory it will
perform the algorithm and self tests. The entropy health tests
are started when the device powers on and are then run
continuously thereafter.

The device verifies the integrity of the following components
during the start-up:

● Bootloader
● OS kernel

● TEE (Trusty)
● Executable code stored in /system and /vendor partitions

All these are verified by checking the signature using the hash of
an asymmetric key that is fused into the SoC during
manufacturing. The code stored in the /system and /vendor
partitions is checked using dm-verity, where the tree is verified
to the hash.

Dm-verity can correct some errors automatically (depends on
the size of the error). Other than errors that can be corrected
automatically, any failure of a match will cause the device to halt
the boot process.

FPT_RCV.2 The device shall support a maintenance mode to enable
recovery from malicious/persistent software.

Supported?
(Y/N)

Describe the process by which malicious software may be
removed automatically (where possible), and if this isn’t
possible, how the user may do so (for example, safe boot,
manually re-installing the system software or a factory reset)

FPT_RCV.2.1 When automated recovery from [DETECTION OF
A MALEVOLENT PERSISTENT PRESENCE BY FPT_TST.1
OR AN UPDATE FAILURE BY FDP_ACF.1/SSW_UPDATE] is
not possible, the TSF shall enter a maintenance mode where the
ability to return to a secure state is provided.

FPT_RCV.2.2 For [DETECTION OF A MALEVOLENT
PERSISTENT PRESENCE BY FPT_TST.1 OR AN UPDATE
FAILURE BY FDP_ACF.1/SSW_UPDATE], the TSF shall
ensure the return of the TOE to a secure state using automated
procedures.

Y For detection of issues in the /system and /vendor partitions
(such as an attempt to write malicious code or make other
malicious changes to code stored there), most errors will be
automatically corrected by the dm-verity check during the start-
up (the error will be detected and corrected automatically).

For larger failures, such as changes to other code on the system
(i.e. not in the /system or /vendor partitions), the device will boot
into a recovery state where-in the user can manually reload
known-good firmware onto the device (factory images can be
found at:
https://developer.android.com/about/versions/15/download).

https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://developer.android.com/about/versions/15/download

Trusted Path/Channels

FTP_ITC_E
XT.1/BT

The device shall support at least Bluetooth Core Specification
v4.1

Supported?
(Y/N)

Document the Bluetooth support on the device

Describe the process for regenerating ECDH key pairs with
paired devices

FTP_ITC_EXT.1.1/BT The TSF shall use [BLUETOOTH® CORE
SPECIFICATION THAT CONFORMS TO [v5.2 [15]]] to provide
a communication channel between itself and another trusted IT
product that is logically distinct from other communication
channels and provides assured identification of its end points
and protection of the channel data from modification or
disclosure.

FTP_ITC_EXT.1.2/BT The TSF shall permit [the TSF, another
trusted IT product] to initiate communication via the trusted
channel.

FTP_ITC_EXT.1.3/BT The TSF shall initiate communication via
the trusted channel for [CONNECTIONS TO BLUETOOTH
DEVICES].

FTP_ITC_EXT.1.4/BT The protocol used by the communications
channel shall support the following requirements: [

● REQUIRE EXPLICIT USER AUTHORISATION BEFORE
PAIRING; AND

● USE SECURE SIMPLE PAIRING AND SECURE
CONNECTIONS FOR PAIRING; AND

● NOT ALLOW MORE THAN ONE BLUETOOTH
CONNECTION TO THE SAME BLUETOOTH DEVICE
ADDRESS; AND

● GENERATE NEW ECDH PUBLIC/PRIVATE KEY PAIRS
EVERY [on every connection between the devices]].

Y

The device has been qualified according to the Bluetooth 5.2
specification. Pairing is not allowed without explicit authorization
from the user (this cannot be programmatically entered but must
be input directly from the user).

If the device is already paired with a peer, a second peer
attempting to connect with the same BD_ADDR will be rejected
(so a device that has been made to look like the first peer will be
blocked from connecting while the original device is already
connected).

https://qualification.bluetooth.com/ListingDetails/205525

Each time the device is connected to a peer over Bluetooth a
new ECDH key pair will be created for the connection.

FTP_ITC_E
XT.1/HTTPS

FTP_ITC_E
XT.1/TLS

The device shall support TLS 1.2 or higher

Supported?
(Y/N)

Document the following:
● versions of TLS that are supported (1.2 & 1.3 expected)
● IETF RFC 5280 support for certificate revocation

checking
● What happens if a certificate is determined to be invalid
● What TLS ciphersuites are supported (for apps/websites

to use)

FTP_ITC_EXT.1.1/HTTPS The TSF shall use [HTTPS THAT
CONFORMS TO IETF RFC 2818 [5]] to provide a
communication channel between itself and another trusted IT
product that is logically distinct from other communication
channels and provides assured identification of its end points
and protection of the channel data from modification or
disclosure.

FTP_ITC_EXT.1.2/HTTPS The TSF shall permit [THE TSF] to
initiate communication via the trusted channel.

FTP_ITC_EXT.1.3/HTTPS The TSF shall initiate communication
via the trusted channel for [COMMUNICATION WITH A
TRUSTED IT PRODUCT].

FTP_ITC_EXT.1.4/HTTPS The protocol used by the
communications channel shall support the following
requirements: [USE TLS AS SPECIFIED IN
FTP_ITC_EXT.1/TLS TO IMPLEMENT HTTPS].

FTP_ITC_EXT.1.1/TLS The TSF shall use [TLS THAT
CONFORMS TO [TLS v1.2 [6], TLS v1.3 [10]] to provide a
communication channel between itself and another trusted IT
product that is logically distinct from other communication
channels and provides assured identification of its end points
and protection of the channel data from modification or
disclosure.

FTP_ITC_EXT.1.2/TLS The TSF shall permit [the TSF] to initiate
communication via the trusted channel.

FTP_ITC_EXT.1.3/TLS The TSF shall initiate communication via
the trusted channel for [COMMUNICATION WITH A TRUSTED
IT PRODUCT].

Y

FTP_ITC_EXT.1.4/TLS The protocol used by the
communications channel shall support the following
requirements: [

● SUPPORT X.509V3 CERTIFICATES FOR MUTUAL
AUTHENTICATION; AND

● DETERMINE VALIDITY OF THE PEER CERTIFICATE
BY CERTIFICATE PATH, EXPIRATION DATE AND
REVOCATION STATUS ACCORDING TO IETF RFC
5280 [7]; AND

● NOTIFY THE TSF AND [not establish the connection] IF
THE PEER CERTIFICATE IS DEEMED INVALID; AND

● SUPPORTS THE FOLLOWING CIPHER SUITES [
○ TLS_RSA_WITH_AES_256_GCM_SHA384

(IETF RFC 5288 [8]),
○ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA

256 (IETF RFC 5289 [9]),
○ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA

384 (IETF RFC 5289 [9]),
○ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_S

HA256 (IETF RFC 5289 [9]),
○ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_S

HA384 (IETF RFC 5289 [9]),
○ TLS_AES_128_GCM_SHA256 as defined in RFC

8446
○ TLS_AES_256_GCM_SHA384 as defined in RFC

8446
○ TLS_CHACHA20_POLY1305_SHA256 as

defined in RFC 8446]

].

The device supports TLS v1.2 and TLS v1.3 (TLS v1.3 is the
default). TLS is available directly via Android APIs (such as for
an app to communicate to a server) or through HTTPS
connections (such as when using a web browser.

The device supports mutual authentication using certificates,
and can check the validity of the peer certificate according to
RFC 5280.

Android supports the ability for an app to check the certificate
revocation status using OCSP. The app must implement the
APIs to enable the check and determine the action to take if the
certificate is found to be revoked (Android does not perform any
action based on the information itself other than notify the app
requesting the check of the state).

https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker

The device does not act as a server so TLS connections must
be initiated by the device (a request from a server to switch to a
TLS connection will cause the device to start one) as opposed to
accepting incoming connections that are not responses to a
request originating from the device.

The following ciphersuites are supported:

● TLS_RSA_WITH_AES_256_GCM_SHA384 as defined
in RFC 5288,

● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as
defined in RFC 5289,

● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as
defined in RFC 5289,

● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
as defined in RFC 5289,

● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
as defined in RFC 5289

● TLS_AES_128_GCM_SHA256 as defined in RFC 8446
● TLS_AES_256_GCM_SHA384 as defined in RFC 8446
● TLS_CHACHA20_POLY1305_SHA256 as defined in

RFC 8446

FTP_ITC_E
XT.1/WLAN

The device shall support IEEE 802.11-2012, 802.1X & EAP-TLS
connectivity

Supported?
(Y/N)

Document the Wi-Fi support on the device including
● Key lengths supported
● TLS 1.2 or higher support
● IETF RFC 5280 support for certificate revocation

checking
● What happens if a certificate is determined to be invalid
● What TLS ciphersuites are supported
● MAC address randomization process (frequency)

FTP_ITC_EXT.1.1/WLAN The TSF shall use [WLAN THAT
CONFORMS TO 802.11-2012 [16]] to provide a communication
channel between itself and another trusted IT product that is
logically distinct from other communication channels and
provides assured identification of its end points and protection of
the channel data from modification or disclosure.

FTP_ITC_EXT.1.2/WLAN The TSF shall permit [the TSF] to
initiate communication via the trusted channel.

FTP_ITC_EXT.1.3/WLAN The TSF shall initiate communication
via the trusted channel for [COMMUNICATION WITH THE
TRUSTED IT PRODUCT THROUGH WLAN CHANNEL].

Y

FTP_ITC_EXT.1.4/WLAN The protocol used by the
communications channel shall support the following
requirements: [

● GENERATE SYMMETRIC KEYS ACCORDING TO
[PRF-384 with key length 128 bit, PRF-704 with key
length 256 bit]; AND

● USES [TLS V1.2 [6]]; AND
● SUPPORTS THE FOLLOWING CIPHER SUITES

[selection:
○ TLS_RSA_WITH_AES_256_GCM_SHA384 (IETF

RFC 5288 [8]),
○ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

(IETF RFC 5289 [9]),
○ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

(IETF RFC 5289 [9]),
○ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2

56 (IETF RFC 5289 [9]),
○ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3

84 (IETF RFC 5289 [9])]
● RANDOMLY GENERATE A NEW MAC ADDRESS

EACH TIME IT CONNECTS TO A DIFFERENT
ACCESS POINT].

The device has been certified to meet the requirements for the
Wi-Fi Alliance.

The device supports PRF-384 and PRF-704 key generation and
TLS v1.2.

The device supports mutual authentication using certificates,
and can check the validity of the peer certificate according to
RFC 5280.

If a peer certificate is determined to be invalid the device will not
connect to the network and alert the user.

The following cipher suites are supported:

● TLS_RSA_WITH_AES_256_GCM_SHA384 as defined
in RFC 5288,

● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
as defined in RFC 5289,

● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
as defined in RFC 5289,

● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as
defined in RFC 5289,

● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as
defined in RFC 5289

https://www.wi-fi.org/product-finder-results?keywords=G6GPR

TS 103 732-2 SFRs

Identification and Authentication
FIA_MBE_E
XT.1

The user must be able to enroll their biometric sample to create
an authentication template. Supported?

(Y/N) Document the process for enrolling the user’s biometric.

FIA_MBE_EXT.1.1 The TSF shall provide a mechanism to enrol
an authenticated user to the biometric system.

Y

The device only supports the under-display fingerprint sensor
(UDFPS). Users will be asked to touch and hold the fingerprint
sensor multiple times (including tips/edges) to complete
enrollment.

FIA_MBV_E
XT.1

Biometric authentication sensors shall meet minimum
requirements for use. Supported?

(Y/N) Document the FAR/FRR information for each biometric modality
available.

FIA_MBV_EXT.1.1 The TSF shall provide a biometric
verification mechanism using [fingerprint].

FIA_MBV_EXT.1.2 The TSF shall provide a biometric
verification mechanism with the [FAR] not exceeding [1:50 000
for fingerprint] and [FRR] not exceeding [1:33 for fingerprint].

Y

UDFPS on the Pixel 8a has met the FAR < 1:50k and FRR <
2.5% thresholds.

Management
FMT_SMF.1
/BAF

The user must be able to manage their biometric templates. Supported?
(Y/N) Document what the user can do in terms of managing enrolled

biometrics.

FMT_SMF.1.1/BAF The TSF shall be capable of performing the
following management functions: [

● ENROL THE INITIAL [fingerprint]; AND
● RE-ENROL OR CHANGE THE [fingerprint]].

Y

Users have the capability to delete their fingerprint enrollments
to disable UDFPS.

TS 103 732-4 SFRs

Applications
FAP_LFC.1 The developer shall describe how preloaded apps included in

the system image are updated. Supported?
(Y/N) The developer can provide a list of the apps along with how

they are updated.
FAP_LFC.1.1 The TSF shall ensure that preloaded applications
are updated by [using an ADP and system software updates (to
the version maintained in firmware)].

Y

Some preloaded applications are only updated as part of the
system software updates but most are provided as apps in the
Play Store and can be updated as any application update.

FAP_LFC.2 The developer shall specify what happens when a preloaded

app is uninstalled and the app reverts back to the one included
in the current system image. Supported?

(Y/N) The developer shall explain the actions that are taken
automatically and what the user may be able to do with the app
once it has been uninstalled.
FAP_LFC.2.1 When a preloaded app update is uninstalled, the
TSF shall warn the user the preloaded app will revert to the
version in the system image and allow the following actions:
[disable the app, none].

Y

Some preloaded apps may be able to be disabled (along with
uninstalling any app updates). This depends on the app (some
are critical to the device and so cannot be disabled). When the
app is not able to be disabled the user is warned about
uninstalling the updates and then continuing to use the app
from that point.

FAP_LFC.3 The developer shall specify the ADP(s) where preinstalled apps

are linked to for updates. Supported?
(Y/N) The developer should provide information about the ADP(s)

where preinstalled apps will download updates from (updates
should not be downloaded from a location that is not an ADP)..
FAP_LFC.3.1 The TSF shall ensure that preinstalled
applications are only updated from the ADP(s) of the TOE
manufacturer and/or OS developer.

Y

All preinstalled apps are installed through the Play Store and so
use the Play Store for all updates..

FAP_LFC.4 The developer shall specify the ADP(s) where preinstalled apps

are downloaded from during the installation process. Supported?
(Y/N) The developer should provide information about the allowed

ADP(s) where apps may be downloaded from. The apps do not
have to be specified.

FAP_LFC.4.1 The TSF shall ensure that preinstalled
applications are only downloaded from the ADP(s) of the TOE
manufacturer and/or OS developer.

Y

All preinstalled apps are installed from the Play Store.

FAP_PRM.1 The developer shall specify the permissions that are restricted

to only preloaded and vendor-owned preinstalled apps. Supported?
(Y/N) The developer provides a list of system permissions that are

restricted to only these apps so that any other app cannot
successfully request access to the specified permission.
FAP_PRM.1.1 The TSF shall restrict the ability of applications
to request [permissions categorized as signature (and can only
be assigned to an application that is signed by the platform
signing key)] to only preloaded applications and preinstalled
applications created by the TOE developer.

Y

Permissions that are categorized at a Protection level of
“signature” can only be assigned to apps that are signed by the
Google platform signing key. These permissions are not
accessible by any apps that are not signed with this key and so
cannot be requested.

More information about the specific permissions available (and
what permissions are categorized as signature) can be found
at:

https://developer.android.com/reference/android/Manifest.permi
ssion

Application Risk
FPA_RSK.1 No sensitive data should be stored outside of the app container

or system credential storage facilities. Supported?
(Y/N) Output from a script that checks for proper usage and a report

on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.1.1 The applications on the TOE shall only store
data within their own storage context.

FPA_RSK.1.2 The applications on the TOE shall only store
keys using the TSF-provided key storage.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.2 The app does not rely on symmetric cryptography with

hardcoded keys as a sole method of encryption. Supported?
(Y/N) Output from a script that checks for proper usage and a report

on any apps that could not provide a clear answer from the
evaluator.

https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission

FPA_RSK.2.1 The applications on the TOE shall use
appropriate cryptographic primitives to support the algorithms in
use.

FPA_RSK.2.2 The applications on the TOE shall not use
deprecated cryptographic modes or algorithms.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.3 The app uses cryptographic primitives that are appropriate for

the particular use-case, configured with parameters that adhere
to industry best practices. Supported?

(Y/N) Output from a script that checks for proper usage and a report
on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.3.1 The applications on the TOE shall not have
hardcoded symmetric keys as the method of internal data
protection.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.4 Data is encrypted on the network using TLS. The secure

channel is used consistently throughout the app. Supported?
(Y/N) Output from a script that checks for proper usage and a report

on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.4.1 The applications on the TOE shall not have
hardcoded unencrypted URLs for network communications.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.5 The TLS settings are in line with current best practices, or as

close as possible if the mobile operating system does not
support the recommended standards. Supported?

(Y/N) Output from a script that checks for proper usage and a report
on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.5.1 The applications on the TOE shall use the
trusted channels provided by FTP_ITC_EXT.1/HTTPS or
FTP_ITC_EXT.1/TLS.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.6 The app verifies the X.509 certificate of the remote endpoint

when the secure channel is established. Supported?
(Y/N) Output from a script that checks for proper usage and a report

on any apps that could not provide a clear answer from the
evaluator.

FPA_RSK.6.1 The applications on the TOE shall validate the
X.509 server certificate according to the following rules:

● The certificate path must terminate with a certificate in
the TOE trust anchor;

● The TOE shall use the main OS-provided method to
verify the certificate.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.7 All inputs from external sources and the user are validated and

if necessary sanitized. This includes data received via the UI,
IPC mechanisms such as intents, custom URLs, and network
sources. Supported?

(Y/N) Output from a script that checks for proper usage and a report
on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.7.1 The applications on the TOE shall sanitize all
input from external sources via any available interface.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.8 The app does not export sensitive functionality via custom URL

schemes, unless these mechanisms are properly protected.

Apps by a common app developer may be acceptable in some
circumstances.

Supported?
(Y/N)

Output from a script that checks for proper usage and a report
on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.8.1 The applications on the TOE shall not support
unauthorized direct access to data from external apps.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.9 The app is signed and provisioned with a valid certificate for the

platform. Supported?
(Y/N) Output from a script that checks for proper usage and a report

on any apps that could not provide a clear answer from the
evaluator.
FPA_RSK.9.1 The applications on the TOE shall be signed with
certificates with a signature format valid for the platform.

Y

Tested as part of the Preloaded App Scripts

FPA_RSK.1
0

The app has been built in release mode, with settings
appropriate for a release build (e.g. non-debuggable). Supported?

(Y/N) Output from a script that checks for proper usage and a report
on any apps that could not provide a clear answer from the
evaluator.

FPA_RSK.10.1 The applications on the TOE shall not have any
debug functionality enabled.

Y

Tested as part of the Preloaded App Scripts

APA_LST.1 Enumerating the preloaded and preinstalled applications with

system permissions is necessary to ensure how apps are
separate from the OS. Supported?

(Y/N) The developer shall list the preloaded apps and any preinstalled
apps (ones that are downloaded during the install) that are
assigned system permissions.
APA_LST.1.1D The developer shall provide a list of all
preloaded and preinstalled applications with system
permissions included on the consumer mobile device at the
completion of the initial CMD setup.

APA_LST.1.1C The list of preloaded applications shall include
all applications contained within the system software.

APA_LST.1.2C The list of preinstalled applications shall include
all applications installed on the consumer mobile device at the
completion of the initial CMD setup that have been assigned
system permissions.

APA_LST.1.1E The evaluator shall confirm that the information
provided meets all requirements for content and presentation of
evidence.

Y

Google does not specifically distinguish between preloaded and
preinstalled apps, all are considered preloaded by internal
Google definitions as any application that would have system
permissions but is updated through the Google Play Store is
considered preloaded (Google does not make any distinction
between Preloaded and Preinstalled in the manner specified in
the requirements).

TS 103 732-5 SFRs

Bootloader - User data protection
FDP_ULK.
1

If the bootloader is able to be unlocked, user data shall be
protected (though wipe). Supported?

(Y/N) Describe whether the bootloader can be unlocked, and if so, how
the device is wiped when the bootloader state changes. (Locking
does not require a wipe, only unlocking)
FDP_ULK.1.1 The TSF shall ensure that [changing the
bootloader to an unlocked state will wipe all user data].

Y

When the bootloader is unlocked the device will be wiped of all
user data.

FDP_BBY.
1

Any boot modes must continue to enforce user data security (no
bypass)

Supported?
(Y/N)

Describe protections that ensure that alternative boot modes
don’t bypass the security functions.

Note this normally would focus on how the data encryption can not be
bypassed (i.e. the device booted to user data without any authentication).
FPT_BBY.1.1 The TSF shall be enforced in any alternative boot
modes.

Y

There are no boot modes that can bypass the data security.

Bootloader - Protection of the TSF
FPT_BLP.1 The bootloader must run in the least privileged mode (ARM EL1

for example) possible.

Supported?
(Y/N)

Provide documentation about the boot process and the modes
the bootloader runs in, with particular focus on the last stage.

If the bootloader is completely removed from memory after
loading the OS, then that is sufficient to meet this.
FPT_BLP.1.1 The bootloader shall be configured to run in the
least privileged mode of the processor.

Y

The bootloader initially loads at EL3 (the first stage of the
bootloader), but once it has completed the loading process
moves to EL1 to proceed with the boot process.

FPT_PRT.1 The partition configuration protection shall be specified to ensure
that the system is properly defined. Supported?

(Y/N) Provide information about how the integrity of the partition
configuration is ensured.
FPT_PRT.1.1 The TSF shall protect the integrity of the partition
configuration to prevent changes outside of the system image
update process.

Y

The integrity of the partition table is maintained using dm-verity.

FPT_PRT.2 Bootable partitions must be documented, including all settings
used on bootable partitions.

Supported?
(Y/N)

Document the partitions of the device. Include both fstab (or
equivalent partition table from the device) for all mounted
partitions and any additional information for partitions that may
not be mounted by the OS but are used for special operations.
FPT_PRT.2.1 The TOE has the following partitions marked as
bootable: the main OS and [recovery].

FPT_PRT.2.2 The TSF enforces restrictions on writing data,
code execution and system permissions through the use of
partition flags during the mounting of partitions for use by the
TOE.

Y

Android partition table descriptions

FPT_ROL.1 Bootloaders must enforce rollback protection for firmware on the
device. Tamper-evident storage must support the rollback
implementation. Supported?

(Y/N) Provide documentation about how rollback protection is
implemented and which components support it (and any
conditions under which rollback may be bypassed and an earlier
version installed).
FPT_ROL.1.1 The TSF shall permit rollback of the system
software and [no other software/firmware] under [[the case where
the bootloader has been unlocked]] conditions.

Y

System software can only be rolled back when the bootloader
has been unlocked (which requires a device wipe first). In the
unlocked state any system image may be installed.

Pixel followed Android AVB rollback protection mechanism

Bootloader - Functional Specification
ADV_FSP.
2

Boot arguments/commands that may be passed to the kernel
from the boot process shall be documented.

Supported?
(Y/N)

The focus here is on commands that can be provided outside of
the normal programmed commands, so commands from the user
that may be passed.

This is a modification to the ADV_FSP.2 documentation that is
already required as part of the evaluation.
As part of the functional specification, the interface between the
bootloader and the kernel shall be considered as a TSFI. Boot
arguments or commands that may be passed from the
bootloader to the kernel outside those that are provided as part
of the TOE configuration (such as arguments that may be passed

Y

https://source.android.com/docs/core/architecture/partitions
https://android.googlesource.com/platform/external/avb/+/master/README.md#Rollback-Protection

by the user through an external connection to the device) shall
be documented and reviewed.
Google adds a few internal fastboot oem arguments specific to
the device beyond the normal ones found in AOSP. These are
related to the boot logos and for manufacturer debugging.

There are no other custom arguments in the bootloader. And the
commands available do not bypass any security functionality on
the device such as enabling a bypass of the authentication
process to unlock user data.

Root of Trust - Protection of the TSF
FPT_INI.1 The device provides a method for verifying the integrity of the

device during the boot process (a Root of Trust). Supported?
(Y/N) Document what the Root of Trust is, how it provides support for

the initialization and what happens when an error is detected.
FPT_INI.1.1 The TOE shall provide an initialization function
which is self-protected for integrity and authenticity.

FPT_INI.1.2 The TOE initialization function shall ensure that
certain properties hold on certain elements immediately before
establishing the TSF in a secure initial state, as specified in
FPT_INI.1.2 Table.

ID1 [INTEGRITY] [ROOT OF TRUST]
ID2 [PREVENTION OF DOWNGRADE TO PREVIOUS
VERSIONS] [ELEMENTS AS SPECIFIED IN FPT_ROL.1.1]

FPT_INI.1.3 The TOE initialization function shall detect and
respond to errors and failures during initialization such that the
TOE [is halted].

FPT_INI.1.4 The TOE initialization function shall only interact
with the TSF in [during boot time] during initialization.

Y

A public key on the device used to verify the initial bootloader is
considered the Root of Trust on the device.

This key is fused into the SoC into special OTP eFuses which
cannot be changed once they have been set maintaining the
integrity of the key.

The device utilizes Android Verified Boot 2.0 to ensure the
integrity of the system as it loads on the device. The trust of the
boot sequence is derived from the public signature key hash
which is set into One Time Programmable (OTP) eFuses in the
SoC. This hash is used to verify that the signature provided as
part of the vmbeta partition is valid (and hence that the partition
can be trusted).

https://android.googlesource.com/platform/external/avb/+/main/README.md

The vmbeta partition includes information that is used to verify
the integrity of the other partitions used to load Android as well
as the rollback counter to protect against rollback attacks.

FPT_RDI.1 The integrity of the stored Root of Trust data is monitored. Supported?
(Y/N) Explain how the data used by the Root of Trust is monitored for

integrity.
FPT_RDI.1.1 The TSF shall monitor Root of Trust data stored in
containers controlled by the TSF for integrity errors.

Y

A public key on the device used to verify the initial bootloader is
considered the Root of Trust on the device.

The RoT key is not specifically monitored by a program but is
stored into a set of OTP eFuses which cannot be changed once
set. Integrity is implied when the bootloader image is successfully
verified using the programmed key. If that fails, it will be a
problem with the image.

GSMA Requirements (FS.56)

Cryptographic Support
FCS_STG_E
XT.1

Developers must provide a keystore that is tied to the hardware
outside the main OS.

Supported?
(Y/N)

Provide documentation of how the keys are protected in a key
store outside the main OS and how this is tied specifically to
the hardware.

FCS_STG_EXT.1.1 The TSF shall provide [hardware-based,
hardware-isolated] secure cryptographic key storage.

NOTE:
Hardware-based => TEE or similar
Hardware isolated => eSE, SPU or similar

FCS_STG_EXT.1.2 The TSF shall utilize the provided secure
cryptographic key storage for protecting the key hierarchy.

Y

The Pixel 8a has both a hardware-based key store (in Trusty
TEE) and hardware-isolated (the Titan M2).

These are both used for the Android keystore depending on the
specific request of the calling application as to where to store
the key (the default is hardware-based).

Identification and Authentication
FIA_SAR.1 Biometric authentication shall meet minimum requirements to

detect spoof attempts. Supported?
(Y/N) Document the SAR (or IAPMR) information for each biometric

modality available.
FIA_SAR.1.1 The TSF shall provide a biometric verification
mechanism with the SAR no exceeding [

● below 7%].

Y
The SAR rate for the UDFPS is 4%.

Privacy
FPR_ANO.2 The OTA client shall not access user data that is not necessary

to perform an update.
Supported?

(Y/N)
Document what data is needed by the OTA client (such as IMEI
or email to be authorized to access the update) and how the
permissions on the device protect the client from user data.
Since the client will have high permissions, showing how the

user data is protected from the OTA client (or the client is
prevented from accessing the data) is to be shown.
FPR_ANO.2.1 The TSF shall ensure that [THE SYSTEM
SOFTWARE OTA CLIENT] is unable to determine the real user
data bound to [the TOE (HARDWARE PLATFORM)].

FPR_ANO.2.2 The TSF shall provide [SYSTEM SOFTWARE
UPDATES] to [THE USER] without soliciting any reference to
the real user data.

Y

The OTA client is part of AOSP
(https://cs.android.com/android/_/android/platform/system/updat
e_engine) and maintained as part of that project.

The OTA client undergoes a privacy review with each Android
release. This review (performed by an independent privacy
team) ensures that the client does not export PII.

Additionally the client is not provided privileges which would
provide it access to user/app data.

Protection of the TSF
FPT_EAT_E
XT.1

Access to telephony commands (such as AT commands or
other terminal listeners) via USB or other external interfaces
must be disabled at ship time.

This is intended to cover commands such as those entered via
the dialer to provide various device information and not access
to the modem itself (such as programmatic access).

Supported?
(Y/N)

Document how telephony commands can be accessed (both
locally through the interfaces and remotely, if possible, from
external devices).
FPT_EAT_EXT.1.1 The TSF shall only allow access to AT
modem commands from [the user interface].

FPT_EAT_EXT.1.2 The TSF shall prompt for approval of AT
modem commands sent to the device from outside the user
interface [is not applicable].

Y

The Pixel 8a does not provide external or remote access to AT
commands, they can only be entered directly through the user
interface on the device (i.e. the phone dialer app). All access to
these commands is disabled as part of the production build
process for the telephony system.

https://cs.android.com/android/_/android/platform/system/update_engine
https://cs.android.com/android/_/android/platform/system/update_engine

FPT_LNW_
EXT.1

Root or system owned processes do not expose any listening
network sockets externally or on loopback interfaces. Disabling a
listening socket must not require an OTA. Supported?

(Y/N) Document the network sockets that are available after the boot
has completed from the device. Both loopback and external open
ports must be documented.
FPT_LNW_EXT.1.1 The TSF shall ensure that no listening
network sockets to the external or loopback IP networks are
associated with processes with system permissions on the
device.

FPT_LNW_EXT.1.2 The TSF shall ensure that [no network
sockets and associated processes] exposed to the external or
loopback IP networks have no system permission on the device.

Y

No network sockets or processes that are exposed to the
network have system permissions.

Life Cycle Requirements
The highlighted text are changes from what is included in the TS 103 732-1 SARs.

ALC_CMC.
2

Any third party code shall be added to the developer’s CM
system. The process for importing third party code and then maintaining
that code shall be described.
ALC_CMC.2.4D The developer shall provide guidance for
importing and updating external software components into the
CM system.

ALC_CMC.2.4C The CM documentation shall describe the
method used to identify external software components and how
those components are updated.

Y

All external code is brought into the internal Google git repository

ALC_CMS.
2

Any third party software components shall be documented where
applicable. For external software components, the original maintainer of the
software shall be specified.
ALC_CMS.2.1C The configuration list shall include the following:
the TOE itself; the evaluation evidence required by the SARs;
and the parts that comprise the TOE including any external
software components.

ALC_CMS.2.2E The evaluator shall confirm that for external
software components, the developer shall include the source and
original maintainer of the component.

Y

All external components that are included in the device are
tracked in the CM system and included as part of the SBOM for
the device. The source of all external components is maintained
as part of that inclusion into the internal CM system. Information
about how this code is tracked is in the document for
ALC_CMC.2.

ALC_DVS_
EXT.1

The developer shall describe the process for generating the
signing keys and unique identifiers on the device (ones that are
fixed).

Supported?
(Y/N)

The developer needs to provide documentation about how the
identifiers are generated and put on the device. This includes
how these are secured while in the factory and cleared when not
needed.

The developer must also describe how signing keys are
generated, stored and protected. This includes how they are
used (procedures for ensuring rogue builds cannot be created).

Here the term keybox is used to identify the location on the
device where the unique keys for the device will be stored. This
can be in various hardware layers below the OS (the SEE).

Note that the highlighted sections are where these are changes from the
PP. Other sections without changes are not included.

ALC_DVS_EXT.1.1D The developer shall produce and provide
development security documentation on the generation, and
protection and use of signing keys and device-unique identifiers.

ALC_DVS_EXT.1.2D The developer shall produce and provide
development security documentation on the acquisition or
generation of device unique identifiers.

ALC_DVS_EXT.1.3D The developer shall produce and provide
development security documentation on the provisioning of data
or keys that may be used by a Root of Trust.

ALC_DVS_EXT.1.1C The development security documentation
shall describe all the physical, procedural, personnel, and other
security measures that are necessary to protect the
confidentiality and integrity of the following manufacturing
components: keys used to sign the publicly released system
software and its updates.

ALC_DVS_EXT.1.2C The development security documentation
shall describe the procedures for selecting the proper signing
keys used for a device and to ensure the use of the proper keys
in the build process.

Y

ALC_DVS_EXT.1.3C The development security documentation
shall describe all the physical, procedural, personnel, and other
security measures that are necessary to protect the
confidentiality and integrity of the following manufacturing
components: unique, non-modifiable identifiers (such as IMEI,
attestation keys or Device Unique Keys) and how they are
properly acquired/created and provisioned for each device.

ALC_DVS_EXT.1.4C The development security documentation
shall describe all the physical, procedural, personnel, and other
security measures that are necessary to protect the
confidentiality and integrity of the following manufacturing
components: data and keys provisioned to the device for a Root
of Trust for the device.
Pixel devices are manufactured in facilities that are ISO 27001 &
9001 certified, following best practices for security measures in
manufacturing.

There are three classes of build keys associated with the types
of builds which can be generated. Two of these (AOSP builds
and Dev builds) have their keys stored within the codebase
inside the Google build systems. These keys are not related to
the production keys and as such are considered to be self-
managed keys. These keys are not accepted on production
hardware as they are signed with a different signing chain to
prevent them being used for anything other than development
purposes on devices that are used for testing and engineering
development. The public key hash stored in the Pixel device
does not correspond to these keys.

Individual SKUs for a Pixel device are each assigned specific
keys so binaries cannot be used across different devices, even
of the same model.

As access to the signing keys is tightly controlled and not
accessible in the clear (even on disk), it is highly unlikely for a
signing key to become public.

ALC_FLR.3

The developer shall have a process for receiving information
about flaws and then provide patches for those flaws to the
impacted devices. In addition this includes a defined period and
frequency of updates to the device (including both OS updates
and regular security patches). Supported?

(Y/N) The developer needs to provide documentation about the flaw
remediation/patching process. This can include public
sites/information along with the support information for the
device under evaluation.

Note that the highlighted sections are where these are changes from the
PP.
ALC_FLR.3.1D The developer shall document and provide flaw
remediation procedures addressed to TOE manufacturers.

ALC_FLR.3.2D The developer shall establish a procedure for
accepting and acting upon all reports of security flaws and
requests for corrections to those flaws.

ALC_FLR.3.3D The developer shall provide flaw remediation
guidance addressed to TOE users.

ALC_FLR.3.4D The developer shall provide public guidance
related to the duration period, frequency and type of updates
that will be released to support the TOE.

ALC_FLR.3.5D The developer shall provide a public
vulnerability disclosure program to provide security bulletins
about the flaws that have been remediated.

ALC_FLR.3.6D The developer shall establish procedures for
ensuring that no known security vulnerabilities rated as High and
Critical (e.g. as classified in public databases) are included in
the TOE at public release.

ALC_FLR.3.1C The flaw remediation procedures documentation
shall describe the procedures used to track all reported security
flaws in each release of the TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require
that a description of the nature and effect of each security flaw
be provided, as well as the status of finding a correction to that
flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require
that corrective actions be identified for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation
shall describe the methods used to provide flaw information,
corrections and guidance on corrective actions to TOE users.
The flaw remediation procedures documentation shall also
define the planned minimum length of time after release of the
TOE that these methods will be used to maintain the TOE.

ALC_FLR.3.5C The flaw remediation procedures shall describe
a means by which the developer receives from TOE users
reports and enquiries of suspected security flaws in the TOE.

ALC_FLR.3.6C The flaw remediation procedures shall include a
procedure requiring timely response and the automatic
distribution of security flaw reports and the associated

Y

corrections to registered users who might be affected by the
security flaw.

ALC_FLR.3.7C The procedures for processing reported security
flaws shall ensure that any reported flaws are remediated and
the remediation procedures issued to TOE users.

ALC_FLR.3.8C The procedures for processing reported security
flaws shall provide safeguards that any corrections to these
security flaws do not introduce any new flaws.

ALC_FLR.3.9C The flaw remediation guidance shall describe a
means by which TOE users report to the developer any
suspected security flaws in the TOE.

ALC_FLR.3.10C The flaw remediation guidance shall describe a
means by which TOE users may register with the developer, to
be eligible to receive security flaw reports and corrections.

ALC_FLR.3.11C The flaw remediation guidance shall identify
the specific points of contact for all reports and enquiries about
security issues involving the TOE.

ALC_FLR.3.12C The flaw remediation procedures
documentation shall define the planned minimum duration after
release of the TOE that these methods will be used to maintain
the TOE.

ALC_FLR.3.13C The flaw remediation procedures
documentation shall define the types of updates (such as
security/maintenance or operating system) and the frequency of
these updates being provided for the TOE.

ALC_FLR.3.14C The flaw remediation procedures
documentation shall describe the process for publicly releasing
security flaw remediation information, including the location(s)
where this will be publicly available.

ALC_FLR.3.15C The flaw remediation procedures
documentation shall describe the process for verifying known
security flaws are not propagated into a new (not yet released)
TOE.

ALC_FLR.3.1E The evaluator shall confirm that the information
provided meets all requirements for content and presentation of
evidence.
The device has a defined lifecycle as can be seen here with
Android OS updates and monthly security patches provided until
May 2031.

https://support.google.com/nexus/answer/4457705?hl=en#zippy=%2Cpixel-later

Google supports a bug filing system for the Android OS outlined
here: https://source.android.com/setup/contribute/report-bugs.
This allows developers or users to search for, file, and vote on
bugs that need to be fixed. This helps to ensure that all bugs
that affect large numbers of people get pushed up in priority to
be fixed. The method outlined above requires the user to submit
their bug to Android’s website. As such, the user of the device
needs to establish a trusted channel web connection to securely
file the bug by following the set-up steps to establish a secure
HTTPS/TLS connection from the TOE, then visiting the above
web portal to submit the report.

Google posts Android Security Bulletins every month about the
patches that have been released with each monthly patch.
Monthly patches are distributed automatically to the devices.

As the release placed on a device at launch is an iteration of the
Android release cycle (generally this would be a new version of
Android, such as 12 to 13), the process of patching the OS is
ongoing and continued as part of the release process. When a
new device is released, all patches up to that date will be
included with the device. This will be the same as for a device
that will receive that OS release as an OTA update.

The Google VDP information can be found here:
https://bughunters.google.com/about/rules/6171833274204160/
android-and-google-devices-security-reward-program-rules

Google requires a security review before the release of any new
device.

The security review process is a blocking gate in the release of
any product, and cannot be bypassed.

https://source.android.com/setup/contribute/report-bugs
https://source.android.com/docs/security/bulletin/
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules

	Overview
	Devices for Certification
	Evaluated Devices
	Equivalent Devices

	TS 103 732-1 SFRs
	Cryptographic Support
	FCS_COP.1 Note

	User Data Protection
	Identification and Authentication
	FIA_UAU.5/Peer

	Security Management
	Privacy
	Protection of the TSF
	Trusted Path/Channels

	TS 103 732-2 SFRs
	Identification and Authentication
	Management

	TS 103 732-4 SFRs
	Applications
	Application Risk

	TS 103 732-5 SFRs
	Bootloader - User data protection
	Bootloader - Protection of the TSF
	Bootloader - Functional Specification
	Root of Trust - Protection of the TSF

	GSMA Requirements (FS.56)
	Cryptographic Support
	Identification and Authentication
	Privacy
	Protection of the TSF
	Life Cycle Requirements

