

SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Security Target

About this document

Scope and purpose

This document contains the Security Target for the evaluation of the SECORA[™] ID v2.02 (SLJ38Gxymm2ap) Java Card according to Common Criteria EAL6 augmented with ALC_FLR.1.

Intended audience

Common Criteria evaluators, Common Criteria certification bodies, Composite product (applet) developers

Table of Contents

Abou	t this document	, 1
Table	of Contents	. 1
1	Introduction	, 8
1.1	ST reference	.8
1.2	TOE reference	8
1.2.1	Underlying hardware platform	8
1.2.2	Dedicated software	.9
1.3	TOE overview	
1.3.1	TOE type	
1.3.2	TOE features	
1.3.2.		
1.3.2.		
1.3.2.		
1.3.3	Non TOE HW/SW/FW available to the TOE	
1.4	TOE description	
1.4.1	TOE components	
1.4.1.	- • • • • • • • • • • • • • • • • • • •	
1.4.1.		
1.4.1.		
1.4.1.4		
1.4.2	TOE identification	
1.4.3	TOE package types	14
1.4.4	TOE life cycle	
1.4.4.	1 Flashing of embedded software in phase 3	17
1.4.4.	··· 0· · ··· · · · · · ·	
1.4.4.		
1.4.5	TOE configurations	
1.4.6	Forms of delivery	19
2	Conformance claims	-
2.1	CC Conformance Claims	
2.2	Protection profile conformance claims	
2.2.1	Demonstrable conformance claim rationale	20

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

Intr	oduction	
3	Security aspects	22
4	Security problem definition	27
4.1	Assets	27
4.1.1	User data	27
4.1.2	TSF data	27
4.2	Threats	
4.2.1	Confidentiality	
4.2.2	Integrity	
4.2.3	Identity usurpation	29
4.2.4	Unauthorized execution	29
4.2.5	Denial of service	
4.2.6	Card management	
4.2.7	Services	
4.2.8	Miscellaneous	
4.3	Organizational security policies (OSPs)	32
4.4	Assumptions	32
4.5	Statement of compatibility	32
5	Security objectives	
5.1	Security objectives for the TOE	
5.2	Security objectives for the operational environment	
5.3	Security objectives rationale	
5.3.1	Threats	
5.3.2	SPD and security objectives	
6	Extended components definition	
_	•	
7 7.1	Security requirements	
	Notation	
7.2	Security functional requirements	
7.2.1	CoreG_LC security functional requirements	
7.2.1.	= / [
7.2.1.	= ,	
7.2.1.		
7.2.1.		
7.2.1.	_ , 0 ,	
7.2.1.		
7.2.1.	_ , _ ,	
7.2.1.	_ ,	
7.2.1. 7.2.1.		
7.2.1.		
	_ ,	
7.2.1. 7.2.1.		
7.2.1.		
7.2.1.		
7.2.1.		
7.2.1.	- 0 0 0	
7.2.1.	- /	
7.2.1.	_ ,	
7.2.1. 7.2.1.		
1.2.1.		
Final	2	Rev 1.1

Security T	arget	
Introduct		
7.2.1.23	FDP_RIP.1/KEYS Subset residual information protection	62
7.2.1.23	FDP_RIP.1/TRANSIENT Subset residual information protection	
7.2.1.25	FDP_ROL1/FIREWALL Basic rollback	
7.2.1.26	FAU_ARP.1 Security alarms	
7.2.1.27	FDP_SDI.2/DATA Stored data integrity monitoring and action	
7.2.1.28	FPR_UNO.1 Unobservability	
7.2.1.29	FPT_FLS.1 Failure with preservation of secure state	
7.2.1.30	FPT_TDC.1 Inter-TSF basic TSF data consistency	
7.2.1.31	FIA_ATD.1/AID User attribute definition	
7.2.1.32	FIA_UID.2/AID User identification before any action	
7.2.1.33	FIA_USB.1/AID User-subject binding	
7.2.1.34	FMT_MTD.1/JCRE Management of TSF data	
7.2.1.35	FMT_MTD.3/JCRE Secure TSF data	
7.2.2	InstG security functional requirements	
7.2.2.1	FDP_ITC.2/Installer Import of user data with security attributes	
7.2.2.2	FMT_SMR.1/Installer Security roles	
7.2.2.3	FPT_RCV.3/Installer Automated recovery without undue loss	
7.2.2.4	FPT_FLS.1/Installer Failure with preservation of secure state	
7.2.3	AdelG security functional requirements	
7.2.3.1	FDP_ACC.2/ADEL Complete access control	
7.2.3.2	FDP_ACF.1/ADEL Security attribute based access control	
7.2.3.3	FDP_RIP.1/ADEL Subset residual information protection	
7.2.3.4	FMT_MSA.1/ADEL Management of security attributes	
7.2.3.5	FMT_MSA.3/ADEL Static attribute initialisation	
7.2.3.6	FMT_SMF.1/ADEL Specification of Management Functions	
7.2.3.7	FMT_SMR.1/ADEL Security roles	
7.2.3.8	FPT_FLS.1/ADEL Failure with preservation of secure state	
7.2.4	OdelG security functional requirements	
7.2.4.1	FDP_RIP.1/ODEL Subset residual information protection	
7.2.4.2	FPT_FLS.1/ODEL Failure with preservation of secure state	70
7.2.5	CarG security functional requirements	
7.2.6	Card manager (CMGRG)	71
7.2.6.1	FDP_UIT.1/CCM Data exchange integrity	
7.2.6.2	FDP_ROL.1/CCM Basic rollback	71
7.2.6.3	FDP_ITC.2/CCM Import of user data with security attributes	72
7.2.6.4	FPT_FLS.1/CCM Failure with preservation of secure state	72
7.2.6.5	FDP_ACC.1/SD Subset access control	72
7.2.6.6	FDP_ACF.1/SD Security attribute based access control	73
7.2.6.7	FMT_MSA.1/SD Management of security attributes	74
7.2.6.8	FMT_MSA.3/SD Static attribute initialisation	74
7.2.6.9	FMT_SMF.1/SD Specification of Management Functions	75
7.2.6.10	FMT_SMR.1/SD Security roles	75
7.2.6.11	FTP_ITC.1/SC Inter-TSF trusted channel	75
7.2.6.12	FCO_NRO.2/SC Enforced proof of origin	
7.2.6.13	FDP_IFC.2/SC Complete information flow control	
7.2.6.14	FDP_IFF.1/SC Simple security attributes	
7.2.6.15	FMT_MSA.1/SC Management of security attributes	
7.2.6.16	FMT_MSA.3/SC Static attribute initialisation	
7.2.6.17	FMT_SMF.1/SC Specification of Management Functions	
7.2.6.18	FIA_UID.1/SC Timing of identification	
7.2.6.19	FIA_UAU.1/SC Timing of authentication	
Final	3	Rev 1.1
		2024-12-19

Cooverity	Targat	
Security		
Introduct		
7.2.6.20	FIA_UAU.4/SC Single-use authentication mechanisms	
7.2.7	SCPG security functional requirements	
7.2.7.1	FPT_PHP.3 Resistance to physical attacks	
7.2.7.2	FPT_TST.1 TSF testing	
7.2.8	SandBoxG security functional requirements	
7.2.8.1	FDP_ACC.2 SandBox Complete access control	
7.2.8.2	FDP_ACF.1 SandBox Security attribute based access control	
7.2.8.3	FMT_MSA.1 SandBox Management of security attributes	
7.2.8.4	FMT_MSA.3 SandBox Static attribute initialization	
7.2.8.5	FMT_SMF.1 SandBox Specification of Management Functions	
7.3	Security requirements rationale	
7.3.1	Security functional requirements rationale	
7.3.1.1	O.SID	83
7.3.1.2	O.FIREWALL	83
7.3.1.3	O.GLOBAL_ARRAYS_CONFID	
7.3.1.4	O.GLOBAL_ARRAYS_INTEG	83
7.3.1.5	O.ARRAY_VIEWS_CONFID	83
7.3.1.6	O.ARRAY_VIEWS_INTEG	83
7.3.1.7	O.NATIVE	83
7.3.1.8	O.OPERATE	83
7.3.1.9	O.REALLOCATION	83
7.3.1.10	O.RESOURCES	
7.3.1.11	O.ALARM	
7.3.1.12	O.CIPHER	
7.3.1.13	O.RNG	
7.3.1.14	O.KEY-MNGT	
7.3.1.15	O.PIN-MNGT	
7.3.1.16	O.TRANSACTION	
7.3.1.17	O.OBJ-DELETION	
7.3.1.18	O.DELETION	
7.3.1.19	O.LOAD	
7.3.1.20	O.INSTALL	
7.3.1.21	O.COMMUNICATION	
7.3.1.22	O.SCP.RNG	
7.3.1.23	O.CARD-MANAGEMENT	
7.3.1.24	O.SCP.RECOVERY	
7.3.1.25	O.SCP.SUPPORT	
7.3.1.26	0.SCP.IC	
7.3.1.27	O.SAND_BOX	
7.3.2	Security assurance requirements rationale	
7.3.2.1	ADV_SPM.1	
7.4	Dependencies	
7.4.1	SFR dependencies	
7.4.2	SAR dependencies	
7.5	Statement of compatibility	
	summary specification	
8.1	SF.Firewall	
8.2	SF.RIP	
8.3	SF.Rollback	
8.4 0.5	SF.SCP	
8.5	SF.CM	
Final	4	Rev 1.1

Revis	sion History	
9	References	99
8.9	SF.SAND_BOX	
8.8	SF.PIN	
8.7	SF.CS	
	SF.Physical	
Intro	oduction	
Sec	curity Target	

Security Target

Security Target

infineon

Security Target

1 Introduction

1.1 ST reference

Title: SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Version: Rev 1.1

Publication date: 2024-12-19

Sponsor: Infineon Technologies AG, 81726 Munich, Germany

Editor: Infineon Technologies AG, 81726 Munich, Germany

1.2 TOE reference

TOE Name: SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Version: v2.02

The TOE consists of several variants which are reflected in the TOE name. Refer to Figure 1 for more details.

CC certificate number: NSCIB-CC-2400063-01

Figure 1 TOE reference

1.2.1 Underlying hardware platform

CC certificate number: BSI-DSZ-CC-1169-V4-2024

CC Identifier: IFX_CCI_00005D

```
Security Target: [ST_IC]
```

Final

Security Target

1.2.2 Dedicated software

1.3 TOE overview

The TOE is a Java Card Platform based on the following specifications:

- Java Card Specification (Classic Edition) version 3.1 ([JCAPI3], [JCRE3], [JCVM3])
- GlobalPlatform Card Specification v.2.3.1 [GP v23]
- GlobalPlatform Amendment D (Version 1.1.1) [GPv23 Amd D]
- GlobalPlatform Amendment E (Version 1.0) [GP Amd E]
- GlobalPlatform Financial Configuration v1.0.2 [GPFC]
- GlobalPlatform Common Implementation Configuration v2.1 [GPCIC]

The TOE allows post-issuance downloading of applications that have been previously verified by an off-card verifier. It constitutes a secure generic platform that supports multi-application runtime environment and provides facilities for secure loading and interoperability between different applications.

1.3.1 TOE type

The TOE is a Java Card with a GP Framework. It can be used to load and execute off-card verified Java Card applets.

1.3.2 TOE features

1.3.2.1 Java card OS standard features

Java card open platform

The Java Card OS supports an open platform mode. In this mode loading, installation and deletion of several applet packages are permitted post issuance. This is default mode.

Cryptographic ciphers

The Java Card OS supports the following cryptographic algorithms:

- AES 128/192/256 Cipher Scheme for secure messaging (ENC), message authentication (MAC) and authentication procedures
- TDES Cipher Scheme for secure messaging (ENC), message authentication (MAC) and authentication procedures
- RSA encryption and decryption up to 4k

Signature algorithms

- ECDSA with SHA-1/SHA-2
- RSA PKCS#1 with SHA-1/SHA-2
- RSA PSS with SHA256

Key agreement algorithms

Final

public SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Security Target

Introduction

- ECDH with KDF and with XY
- PACE with generic mapping and chip authentication mapping

Key pair generation

- EC
- RSA with modulus/exponent and CRT

Key Sizes

- AES 128/192/256
- TDES 128/192 ٠
- RSA modulus sizes from 512 to 4096 bits
- EC curves according to NIST and Brainpool
 - NIST standard curves from [FIPS 186-4]: P192, P224, P256, P384, P521
 - Brainpool curves from RFC 5639: BrainpoolP224, BrainpoolP256r1, BrainpoolP320r1, BrainpoolP384r1, BrainpoolP512r1, BrainpoolP256t1, BrainpoolP320t1, BrainpoolP384t1, BrainpoolP512t1

Message digest algorithms

- SHA-1
- SHA-2 family: SHA224, SHA256, SHA384, SHA512
- HMAC family: SHA256, SHA384, SHA512

Note: SHA-1 as a security algorithm is only used as part of a session key derivation.

Random number generation algorithms

Hybrid physical RNG according to [AIS 31] PTG.2, PTG.3 and DRG.4

Java Card OS proprietary features 1.3.2.2

Java Card static mode

The Java Card OS supports a proprietary "Java Card Static" mode. The OS provides an APDU command to activate the static mode. In this mode the installation of new applet instances (based on the packages already present on the card) is allowed. Deletion of already present applet instances and applet packages is allowed. Loading of additional packages is not allowed.

Java Card native mode

The Java Card OS supports a proprietary "Java Card native" mode. The OS provides an APDU command to activate the native mode. In this mode, full privacy is provided by removing any means to get tracking information. In particular, no GP functions and no TOE identification commands are available.

LDS-API

The Java Card OS supports a proprietary accelerated API for ICAO DOC 9303 ([DOC9303]) compliant secure messaging and session key derivation.

PACE API

The Java Card OS supports a proprietary API for the PACE cryptographic protocol which is especially hardened against side channel attacks. This ensures that PACE can be used with low entropy PINs Final 10

Security Target Introduction Crypto Toolbox API

The Java Card OS supports a proprietary API to perform crypto modular operations.

SandBox

The Java Card OS supports the Sandbox framework which provoides a mechanism to implement customer specific own drivers to extend the OS features. The software component executing the 3rd party native code securely (which is in an isolated environment from the TOE) is called SandBox. These untrusted 3rd party native functions are not part of the TOE. The hardware components may be accessed such as CPU, SCP, RNG, CRC, Crypto2403, etc. However, other OS resources are not interfeared.

TOE also supports following utility functions:

- ECC based point addition and check operations
- Secure Hash algorithms for SHA1 and SHA256
- Garbage collector services
- High endurance NVM object operations
- Interfaces related to proprietary timer services to compute time difference
- ToolBox APIs to perform ModularArithmatic operations like, modular multiplication and modular subtraction.

Note: For more details, refer to [APISPEC] and [DATASHEET].

1.3.2.3 GlobalPlatform features

GlobalPlatform GP FC and CIC profile

The TOE is compliant to the GP v2.3.1 [GP v23] with CIC v2.1 [GPCIC] and FC Config v1.0.2 [GPFC].

Secure channel

The TOE supports the following secure channel protocols

- SCP 02 with option 15 and 55 according to [GP v23]
- SCP 03 with option 10 and 00 according to [GPv23 Amd D]

Logical channel

The TOE supports 4 logical channels

Optional APIs

• org.globalplatform.Personalization

Global object

The TOE supports a global PIN CVM application, implementing velocity checking. The CVM value can be in any of the formats BCD, ASCII, HEX.

TOE identification

Security Target

Introduction

The TOE provides a proprietary function to return TOE identification. This command is disabled in case the TOE is in native mode.

Administration options

The TOE supports Issuer Security Domain to allow independent entities administrate their assigned applications.

- Deletion of applications via Authorized Management (AM).
- Installation of applications via AM
- Loading Executable Load Files via AM
- Removal of packages via AM

1.3.3 Non TOE HW/SW/FW available to the TOE

Bytecode verification must be done off-card with the latest version of the bytecode verifier.

1.4 TOE description

1.4.1 TOE components

The Figure 2 shows the composite TOE. The evaluation focus of this ST is mentioned in the diagram itself.

Figure 2 TOE overview

Security Target

1.4.1.1 Underlying HW platform

The underlying HW platform is a certified smart card controller with Common Criteria certificate number BSI-DSZ-CC-1169-V4-2024 with identifier IFX_CCI_00005D. The smart card controller can be delivered with three different default input capacitances of the contactless antenna pads, 27pf or 56pf or 78pf. For details, please see [ST_IC].

1.4.1.2 IC dedicated software

The firmware of the underlying platform has version 80.309.05.0.

The following dedicated software libaries are part of the underlying platform certification. Those libraries will not be delivered to the customers of this TOE.

- Asymmetric Cryptographic Library(ACL): This library contains hardened code for RSA and ECC cryptography which supports RSA up to 4096 bits and ECC up to 521 Bits. The used RSA library is part of the configuration options. The ACL also contains the Toolbox API, which provides basic arithmetical primitives.
- **Symmetric Cryptographic Library(SCL)**: This library contains hardened code for AES and TDES cryptography.
- Hardware Support Library(HSL): This library contains code for Non-Volatile Memory (NVM) read/write access.
- **UMSLC:** The User Mode Security Life Control (UMSLC) library allows the user application to check the activity and proper function of the system's security features.

Security Target

Introduction

• HCL: The Hash Crypto Library offers a high-level interface for performing cryptographic hash functions.

No other optional IC dedicated software library is used in the embedded software.

1.4.1.3 IC embedded software

The IC embedded software consists of JCVM 3.1 [JCVM3], JCRE 3.1 [JCRE3], JCAPI 3.1 [JCAPI3] and GP 2.3.1 ([GP v23], [GPv23 Amd D]) framework with CIC [GPCIC] and FC Config [GPFC]. Additionally, it consists of a proprietary API which is described in [DATASHEET].

1.4.1.4 Guidance documentation

The TOE will be delivered with the following guidance documentation.

Table 1 Guidance documentation

Document	Version	Date
SECORA™ ID v2.02 (SLJ38Gxymm2ap) Administration Guide	Revision 1.2	2024-09-13
SECORA™ ID v2.02 (SLJ38Gxymm2ap) Extended datasheet	Revision 1.1	2024-07-30
SECORA™ ID v2.02 (SLJ38Gxymm2ap) Security Guide	Revision 1.3	2024-11-14
SECORA™ ID v2 (SLJ38Gxymmmap) Product API Specification	Rev 1.00.1193	2024-03-05
SECORA™ ID v2 (SLJ38Gxymmmap) Sandbox Application Programmer's Reference Manual	Rev 1.0	2024-04-23
SECORA™ ID v2 (SLJ38Gxymmmap) Errata sheet	Revision 1.1	2024-12-13

1.4.2 TOE identification

The TOE can be uniquely identified as described in [SECGUIDE].

The TOE belonging to this Security target is uniquely identified by the following components:

Table 2 TOE identifi	cation data
----------------------	-------------

Component	Reference value
CC Identifier of underlying platform	IFX_CCI_00005D
Embedded OS version	'01 00 07 FA 15 00 00 13 05'
ACL version	03.35.001
SCL version	02.15.000
HSL version	03.52.9708
HCL version	01.13.002
UMSLC version	01.30.0564

1.4.3 TOE package types

The TOE can be delivered in the following forms:

- Packaged as
 - contact based modules

Security Target

Introduction

- dual interface modules
- contactless modules
- Packageless as sawn or unsawn wafer

The TOE supports Coil on Module antennas for dual interface modules.

Figure 3 Coil on Module example

1.4.4 TOE life cycle

The life cycle of this composite TOE is associated to the life cycle of the underlying hardware platform. The association is illustrated in Figure 4. The delivery points are marked with double-arrows.

A detailed description of the life cycles of the underlying hardware IC can be found in [ST_IC].

Security Target

Introduction

There are two life cycle variants of the composite TOE, depending on where the flashing of the embedded software takes place:

Security Target

Introduction

- The embedded software is flashed on the IC during phase 3 of the IC life cycle. This can only be done by Infineon.
- The embedded software is flashed on the IC during phase 5 of the IC life cycle. This can only be done by Infineon.

1.4.4.1 Flashing of embedded software in phase 3

This is the right-hand path of the diagram in Figure 4.

- Phase 1: The embedded software development (i.e. Java Card OS, GlobalPlatform API applet and additional applets) takes place.
- Phase 2: Security IC development is done in this phase and life cycle of this phase is covered in the underlying HW certification.
- Phase 3: Static configuration of the embedded software hex image is done. Pre-loaded applets and the GP ISD keys will be included in the hex image via the templating mechanism. Flashing of the hex image on the IC takes place.
- Phase 4: Optionally the The IC packaging is done in this phase like preassembly (Grinding, dicing) and assembly (mounting) with required packaging based on the customer needs.
- Phase 5: Dynamic configuration data can be written or changed via proprietary APDU commands. The user is Infineon or a third-party composite product integrator. The TOE will be delivered to the customer.
- Phase 6: The applets will be personalized. Additional applets can be installed by using GlobalPlatform commands.
- Phase 7: The Java Card operating system and its applets are in operational phase.

1.4.4.2 Flashing of embedded software in phase 5

This is the left-hand path of the diagram in Figure 4.

- Phase 1: The embedded software development (i.e. Java Card OS, GlobalPlatform API applet and additional applets) takes place.
- Phase 2: Security IC development is done in this phase and life cycle of this phase is covered in the underlying HW certification.
- Phase 3: Static configuration of the embedded software hex image is done. Pre-loaded applets can be included in the hex image via the templating mechanism. Transport keys for GP ISD are written in the hex image. The hex image for the embedded software will be encrypted with the key of the composite product integrator. The user is always Infineon.
- Phase 4: The IC packaging is done in this phase like preassembly (Grinding, dicing) and assembly (mounting) with required packaging.
- Phase 5: Flashing of the hex image on the IC takes place. Applets can be installed via GlobalPlatform APDU commands. Configuration data can be written or changed via proprietary APDU commands. The user is a third-party composite product integrator.
- Phase 6: The applets will be personalized. Additional applets can be installed by using GlobalPlatform commands. After that phase, the Java Card with its applet will be handed over to the end customer.
- Phase 7: The Java Card operating system and its applets are in operational phase.

Security Target

Introduction

1.4.4.3 Templating mechanism

Templating is a production method, where installation and pre-personalisation of applets can be done in phase 3 of the Java Card life cycle.

Templating is done with a special templating card (special configurator option) or on a card in a special life-cycle state or a card simulator. Only one option needs to be implemented. On this card or simulation,

- the operating system can be initialized
- applets can be loaded and/or installed
- GlobalPlatform keys can be loaded or exchanged
- Applications can be pre-personalized with common data

After those steps, a "NVM Image" of the chip can be extracted.

The NVM Image will be sent to an Infineon production site. NVM Image creation and NVM Image loading is always performed in a secure and certified environment.

1.4.5 TOE configurations

The TOE can be delivered with different configuration options. The following table shows all possible configuration options and associated life cycles, where the changes are permitted.

Changes in lifecycle phase 3 are done by directly patching the binary image or by sending APDU commands to a simulator image. It can only be done by the manufacturer Infineon.

Changes in lifecycle phase 6 are done by specific APDU commands (see [ADMIN]). It can be done by the personalizer or composite product developer.

Configuration item	Life cycle
Configurable Heap Size in 1kB granularity for applet instances and applet data.	3
APDU Buffer Size (APDU including header) in 261 (default), 512, 1024 and 1500 byte.	3
CPLC data	3,6
ATR	3,6
Deactive CIM (default) or active CIM	3
Random and fixed PUPI/UID	3,6
Contactbased: T=1, divider = 16 @ 5 MHz	3,6
Contactless: Type A or B	3,6
106, 212, 424, 848 kbaud/s with asymmetric baudrates; VHBR up to 6.8 Mb/s (on/off), Higher Frame Size up to 1024 bit (on/off)	3
FWI values in the range of 6 to 14	3,6
ATS or ATQB	3,6
Blocking of Applet-Loading (deactivate command INSTALL [for load]) by APDU-command	6
Blocking of Applet-Loading (deactivate command INSTALL [for load]) by configuration tool (static, modifying HEX-file)	3
Blocking of Applet-Loading (deactivate command INSTALL [for load]) by configuration tool (static, modifying HEX-file) autonomously when GP state SECURED is reached	3

Table 3TOE configurations

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

Introduction

1.4.6 Forms of delivery

Table 4TOE deliveries: forms and methods

TOE Component	Delivered Format	Delivery Method	Comment
Underlying platform with Java Card OS	See ch. 1.4.3	Postal transfer in cages	All materials are delivered to distribution centers in cages, locked.
All User Guidance documents	Personalized PDF	SecureX transfer	

Security Target
Conformance claims

2 Conformance claims

2.1 CC Conformance Claims

Conformance of this security target is claimed for CC part 2 revision 5 [CC2] extended by FCS_RNG.1 and CC part 3 revision 5 [CC3] conformant.

The Evaluation Assurance Level is EAL 6 augmented by ALC_FLR.1.

2.2 Protection profile conformance claims

This Security Target is in demonstrable conformance to the Java Card Protection Profile Open Configuration Version 3.1 [JC PP].

2.2.1 Demonstrable conformance claim rationale

• The following security objectives for the operational environment and assumptions have been mapped to security objectives for the TOE in this ST:

Table 5Mapping of OE to Objectives

OE objectives of underlying platform	TOE objectives
OE.CARD-MANAGEMENT	O.CARD-MANAGEMENT
OE.SCP.IC	O.SCP.IC
OE.SCP.RECOVERY	O.SCP.RECOVERY
OE.SCP.SUPPORT	O.SCP.SUPPORT

- Due to the introduction of O.CARD-MANAGEMENT, the assumption A.DELETION has been removed.
- The objective O.CARD-MANAGEMENT has been refined to include GlobalPlatform specific objectives.
- The following threats have been added:

Table 6	Additional threats and associated objectives
---------	--

Threats	TOE Objectives	
T.COMMUNICATION	O.COMMUNICATION	
<u>T.RNG</u>	O.SCP.RNG	
T.UNAUTHORIZED CARD MNGT	O.CARD-MANAGEMENT, O.COMMUNICATION	
T.LIFE CYCLE	O.CARD-MANAGEMENT	
T.SAND BOX	O.SAND BOX	

- A new SFR group CMGRG has been introduced to reflect the integration of the GlobalPlatform card and content management. The SFRs from the group CMGRG have been taken from [JC USIM PP] but conformity to this PP is not claimed. Therefore, all SFRs of CMGRG shall be considered as defined in this ST.
- The group CarG has been refined by the group CMGRG. An SFR mapping from the CarG to the CMGRG group is given in chapter 7.2.5.
- The BIOMETRIC TEMPLATES, JCRMI, EXTENDED MEMORY, SENSITIVE ARRAY, SENSITIVE RESULT, PACKAGE MONOTONIC COUNTERS, PACKAGE CRYPTOGRAPHIC CERTIFICATE MANAGEMENT, PACKAGE KEY DERIVATION

Security Target

Conformance claims

FUNCTIONS (KDF) and PACKAGE SYSTEM TIME groups are not part of the TOE and have been removed for this ST.

A new SFR group SandBoxG has been introduced to reflect the integration of Sandbox framework which
provoides a mechanism to implement customer specific own drivers to extend the OS features. The
O.SAND_BOX to include the objective for the Sandbox framework to provide the separation of the native sand
box area and the TOE. The relevant threats and SFRs are also defined in this ST and no conformity to any PP is
claimed

Security Target
Security aspects

3 Security aspects

This chapter describes the main security issues of the Java Card System and its environment addressed in this Security Target, called "security aspects", in a CC-independent way.

In addition to this, they also give a semi-formal framework to express the CC security environment and objectives of the TOE. They can be instantiated as assumptions, threats, objectives (for the TOE and the environment) or organizational security policies. For instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2) The TOE must also return to a well-defined valid state before a service request in case of failure during its operation.

TSFs must be continuously active in one way or another; this is called "OPERATE". The Security Target may include an assumption, called "A.OPERATE", stating that it is assumed that the TOE ensures continued correct operation of its security functions, and so on. However, it may also include a threat, called "T.OPERATE", to be interpreted as the negation of the statement #.OPERATE. In this example, this amounts to stating that an attacker may try to circumvent some specific TSF by temporarily shutting it down. The use of "OPERATE" is intended to ease the understanding of this document.

This section presents security aspects that will be used in the remainder of this document. Some being quite general, we give further details, which are numbered for easier cross-reference within the document. For instance, the two parts of #.OPERATE, when instantiated with an objective "O.OPERATE", may be met by separate SFRs in the rationale. The numbering then adds further details on the relationship between the objective and those SFRs.

All security aspects in this chapter have been taken verbatim from [JC PP].

#.CONFID-APPLI-DATA	Application data must be protected against unauthorized disclosure. This concerns logical attacks at runtime in order to gain read access to other application's data.
#.CONFID-JCS-CODE	Java Card System code must be protected against unauthorized disclosure. Knowledge of the Java Card System code may allow bypassing the TSF. This concerns logical attacks at runtime in order to gain a read access to executable code, typically by executing an application that tries to read the memory area where a piece of Java Card System code is stored.
#.CONFID-JCS-DATA	Java Card System data must be protected against unauthorized disclosure. This concerns logical attacks at runtime in order to gain a read access to Java Card System data. Java Card System data includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card platform API classes as well.

Table 7Confidentiality

Table 8 Integrity

#.INTEG-APPLI-CODE	Application code must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to the memory zone where executable code is stored. In post-issuance application loading, this threat also concerns the modification of application code in transit to the card.
#.INTEG-APPLI-DATA	Application data must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain unauthorized write access

Security Target

	to application data. In post-issuance application loading, this threat also concerns the modification of application data contained in a CAP file in transit to the card. For instance, a CAP file contains the values to be used for initializing the static fields of the CAP file.
#.INTEG-JCS-CODE	Java Card System code must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to executable code.
#.INTEG-JCS-DATA	Java Card System data must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to Java Card System data. Java Card System data includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card API classes as well.

Table 9Unauthorized execution

#.EXE-APPLI-CODE	Application (byte)code must be protected against unauthorized execution. This concerns (1) invoking a method outside the scope of the accessibility rules provided by the access modifiers of the Java programming language ([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the contents of a data memory area as if it was executable code; (3) unauthorized execution of a remote method from the CAD.
#.EXE-JCS-CODE	Java Card System bytecode must be protected against unauthorized execution. Java Card System bytecode includes any code of the Java Card RE or API. This concerns (1) invoking a method outside the scope of the accessibility rules provided by the access modifiers of the Java programming language ([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the contents of a data memory area as if it was executable code. Note that execute access to native code of the Java Card System and applications is the concern of #.NATIVE.
#.FIREWALL	The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code between CAP files (that is, controlled execution contexts) as well as between CAP files and the JCRE context. An applet shall not read, write, compare a piece of data belonging to an applet that is not in the same context, or execute one of the methods of an applet in another context without its authorization.
#.NATIVE	Because the execution of native code is outside of the JCS TSF scope, it must be secured so as to not provide ways to bypass the TSFs of the JCS. Loading of native code, which is as well outside those TSFs, is submitted to the same requirements. Should native software be privileged in this respect, exceptions to the policies must include a rationale for the new security framework they introduce.

Table 10Bytecode verification

•	
#.VERIFICATION	Bytecode must be verified prior to being executed. Bytecode verification
	includes (1) how well-formed CAP file is and the verification of the typing
	constraints on the bytecode, (2) binary compatibility with installed CAP files
	and the assurance that the export files used to check the CAP file correspond
	to those that will be present on the card when loading occurs.

infineon

Security Target
Security aspects

Table 11 Card management

functions such as the installation, update or deletion of applets. (2) The card manager shall implement the card issuer's policy on the card.
(1) The TOE must be able to return to a safe and consistent state when the installation of a CAP file or an applet fails or be cancelled (whatever the reasons). (2) Installing an applet must have no effect on the code and data of already installed applets. The installation procedure should not be used to bypass the TSFs. In short, it is an atomic operation, free of harmful effects on the state of the other applets. (3) The procedure of loading and installing a CAP file shall ensure its integrity and authenticity.
(1) Users and subjects of the TOE must be identified. (2) The identity of sensitive users and subjects associated with administrative and privileged roles must be particularly protected; this concerns the Java Card RE, the applets registered on the card, and especially the default applet and the currently selected applet (and all other active applets in Java Card System 2.2.x). A change of identity, especially standing for an administrative role (like an applet impersonating the Java Card RE), is a severe violation of the Security Functional Requirements (SFR). Selection controls the access to any data exchange between the TOE and the CAD and therefore, must be protected as well. The loading of a CAP file or any exchange of data through the APDU buffer (which can be accessed by any applet) can lead to disclosure of keys, application code or data, and so on.
(1) Deallocation of objects should not introduce security holes in the form of references pointing to memory zones that are not longer in use, or have been reused for other purposes. Deletion of collection of objects should not be maliciously used to circumvent the TSFs. (2) Erasure, if deemed successful, shall ensure that the deleted class instance is no longer accessible.
(1) Deletion of installed applets (or CAP files) should not introduce security holes in the form of broken references to garbage collected code or data, nor should they alter integrity or confidentiality of remaining applets. The deletion procedure should not be maliciously used to bypass the TSFs. (2) Erasure, if deemed successful, shall ensure that any data owned by the deleted applet is no longer accessible (shared objects shall either prevent deletion or be made inaccessible). A deleted applet cannot be selected or receive APDU commands. CAP file deletion shall make the code of the CAP file no longer available for execution. (3) Power failure or other failures during the process shall be taken into account in the implementation so as to preserve the SFRs. This does not mandate, however, the process to be atomic. For instance, an interrupted deletion may result in the loss of user data, as long as it does not violate the SFRs. The deletion procedure and its characteristics (whether deletion is either physical or logical, what happens if the deleted application was the default applet, the order to be observed on the deletion steps) are implementation-dependent. The only commitment is that deletion shall not jeopardize the TOE (or its assets) in case of failure (such as power shortage). Deletion of a single applet instance and deletion of a whole CAP file are functionally different operations and may obey different security rules. For

Security Target

	instance, specific CAP files can be declared to be undeletable (for instance, the Java Card API packages), or the dependency between installed CAP files may forbid the deletion (like a CAP file using super classes or super interfaces declared in another CAP file).
--	---

#.ALARM	The TOE shall provide appropriate feedback upon detection of a potential
	security violation. This particularly concerns the type errors detected by the bytecode verifier, the security exceptions thrown by the Java Card VM, or any other security-related event occurring during the execution of a TSF.
#.OPERATE	(1) The TOE must ensure continued correct operation of its security functions.(2) In case of failure during its operation, the TOE must also return to a well-defined valid state before the next service request.
#.RESOURCES	The TOE controls the availability of resources for the applications and enforces quotas and limitations in order to prevent unauthorized denial of service or malfunction of the TSFs. This concerns both execution (dynamic memory allocation) and installation (static memory allocation) of applications and CAP files.
#.CIPHER	The TOE shall provide a means to the applications for ciphering sensitive data, for instance, through a programming interface to low-level, highly secure cryptographic services. In particular, those services must support cryptographic algorithms consistent with cryptographic usage policies and standards.
#.KEY-MNGT	The TOE shall provide a means to securely manage cryptographic keys. This includes: (1) Keys shall be generated in accordance with specified cryptographic key generation algorithms and specified cryptographic key sizes, (2) Keys must be distributed in accordance with specified cryptographic key distribution methods, (3) Keys must be initialized before being used, (4) Keys shall be destroyed in accordance with specified cryptographic key destruction methods.
#.PIN-MNGT	The TOE shall provide a means to securely manage PIN objects. This includes: (1) Atomic update of PIN value and try counter, (2) No rollback on the PIN- checking function, (3) Keeping the PIN value (once initialized) secret (for instance, no clear-PIN-reading function), (4) Enhanced protection of PIN's security attributes (state, try counter) in confidentiality and integrity.
#.SCP	The smart card platform must be secure with respect to the SFRs. Then: (1) After a power loss, RF signal loss or sudden card removal prior to completion of some communication protocol, the SCP will allow the TOE on the next power up to either complete the interrupted operation or revert to a secure state. (2) It does not allow the SFRs to be bypassed or altered and does not allow access to other low-level functions than those made available by the packages of the Java Card API. That includes the protection of its private data and code (against disclosure or modification) from the Java Card System. (3) It provides secure low-level cryptographic processing to the Java Card System. (4) It supports the needs for any update to a single persistent object or class field to be atomic, and possibly a low-level transaction mechanism. (5) It allows the Java Card System to store data in "persistent technology memory" or in volatile memory, depending on its needs (for instance,

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

Security aspects	
	transient objects must not be stored in non-volatile memory). The memory model is structured and allows for low-level control accesses (segmentation fault detection). (6) It safely transmits low-level exceptions to the TOE (arithmetic exceptions, checksum errors), when applicable. Finally, it is required that (7) the IC is designed in accordance with a well-defined set of policies and standards (for instance, those specified in [PP0084]), and will be tamper resistant to actually prevent an attacker from extracting or altering security data (like cryptographic keys) by using commonly employed techniques (physical probing and sophisticated analysis of the chip). This especially matters to the management (storage and operation) of confidential application data such as cryptographic keys.
#.TRANSACTION	The TOE must provide a means to execute a set of operations atomically. This mechanism must not jeopardise the execution of the user applications. The transaction status at the beginning of an applet session must be closed (no pending updates).

infineon

Security Target
Security problem definition

4 Security problem definition

4.1 Assets

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of assets is always intended with respect to un-trusted people or software, as various parties are involved during the first stages of the smart card product life-cycle; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece of information or data. For example, a piece of software may be either a piece of source code (one asset) or a piece of compiled code (another asset), and may exist in various formats at different stages of its development (digital supports, printed paper). This separation is motivated by the fact that a threat may concern one form at one stage, but be meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is data created by and for the user (User data) or data created by and for the TOE (TSF data). For each asset it is specified the kind of dangers that weigh on it.

4.1.1 User data

Asset	Explanation
D.APP_CODE	The code of the applets and libraries loaded on the card.
	To be protected from unauthorized modification.
D.APP_C_DATA	Confidentiality - sensitive data of the applications, like the data contained in an object, an array view, a static field, a local variable of the currently executed method, or a position of the operand stack.
	To be protected from unauthorized disclosure.
D.APP_I_DATA	Integrity sensitive data of the applications, like the data contained in an object, an array view and the PIN security attributes (PIN Try limit, PIN Try counter and State).
	To be protected from unauthorized modification.
D.APP_KEYS	Cryptographic keys owned by the applets.
	To be protected from unauthorized disclosure and modification.
D.PIN	Any end-user's PIN.
	To be protected from unauthorized disclosure and modification.

Table 13 User data defined in [JC PP]

4.1.2 TSF data

Table 14TSF data defined in [JC PP]

Asset	Explanation
D.API_DATA	Private data of the API, like the contents of its private fields.
	To be protected from unauthorized disclosure and modification.
D.CRYPTO	Cryptographic data used in runtime cryptographic computations, like a seed used to generate a key.
	To be protected from unauthorized disclosure and modification.
D.JCS_CODE	The code of the Java Card System.

Security Target

Security problem definition

Asset	Explanation
	To be protected from unauthorized disclosure and modification.
D.JCS_DATA	The internal runtime data areas necessary for the execution of the Java Card VM, such as, for instance, the frame stack, the program counter, the class of an object, the length allocated for an array, any pointer used to chain data-structures.
	To be protected from unauthorized disclosure or modification.
D.SEC_DATA	The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify the installed applets, the currently selected applet, the current context of execution and the owner of each object.
	To be protected from unauthorized disclosure and modification.

Table 15 TSF data defined in this ST

Asset	Explanation
D.CM DATA	The data of the card management environment, like for instance, the identifiers, the privileges, life cycle states, the memory resource quotas of applets and security domains.
	To be protected from unauthorized modification.

4.2 Threats

This section introduces the threats to the assets against which specific protection within the TOE or its environment is required. Several groups of threats are distinguished according to the configuration chosen for the TOE and the means used in the attack. The classification is also inspired by the components of the TOE that are supposed to counter each threat.

4.2.1 Confidentiality

Table 16Confidentiality related threats defined in [JC PP]

Threat	Explanation
T.CONFID-APPLI-DATA	The attacker executes an application to disclose data belonging to another application. See #.CONFID-APPLI-DATA for details.
	Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.
T.CONFID-JCS-CODE	The attacker executes an application to disclose the Java Card System code. See #.CONFID-JCS-CODE for details.
	Directly threatened asset(s): D.JCS_CODE.
T.CONFID-JCS-DATA	The attacker executes an application to disclose data belonging to the Java Card System. See #.CONFID-JCS-DATA for details.
	Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.

4.2.2 Integrity

Table 17Integrity related threats defined in [JC PP]

Threat	Explanation
T.INTEG-APPLI-CODE	The attacker executes an application to alter (part of) its own code or another application's code. See #.INTEG-APPLI-CODE for details.

Security Target

Security problem definition

Threat	Explanation
	Directly threatened asset(s): D.APP_CODE.
T.INTEG-APPLI- CODE.LOAD	The attacker modifies (part of) its own or another application code when an application CAP file is transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.
	Directly threatened asset(s): D.APP_CODE.
T.INTEG-APPLI-DATA	The attacker executes an application to alter (part of) another application's data. See #.INTEG-APPLI-DATA for details.
	Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.
T.INTEG-APPLI- DATA.LOAD	The attacker modifies (part of) the initialization data contained in an application CAP file when the CAP file is transmitted to the card for installation. See #.INTEG-APPLI-DATA for details.
	Directly threatened asset(s): D.APP_I_DATA and D.APP_KEY.
T.INTEG-JCS-CODE	The attacker executes an application to alter (part of) the Java Card System code. See #.INTEG-JCS-CODE for details.
	Directly threatened asset(s): D.JCS_CODE.
T.INTEG-JCS-DATA	The attacker executes an application to alter (part of) Java Card System or API data. See #.INTEG-JCS-DATA for details.
	Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.
	Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-card information. Nevertheless, they vary greatly on the employed means and threatened assets, and are thus covered by quite different objectives in the sequel. That is why a more detailed list is given hereafter.

4.2.3 Identity usurpation

Table 18 Threats defined in [JC PP]

Threat	Explanation
T.SID.1	An applet impersonates another application, or even the Java Card RE, in order to gain illegal access to some resources of the card or with respect to the end user or the terminal. See #.SID for details.
	Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN and D.APP_KEYs.
T.SID.2	The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and currently selected applet), which allows illegal impersonation of this role. See #.SID for further details.
	Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack succeed, depending on whose identity was forged).

4.2.4 Unauthorized execution

Table 19Threats defined in [JC PP]

Security Target

Security problem definition

Threat	Explanation
T.EXE-CODE.1	An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and #.EXE-APPLI-CODE for details.
	Directly threatened asset(s): D.APP_CODE.
T.EXE-CODE.2	An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-CODE and #.EXE-APPLI-CODE for details. Directly threatened asset(s): D.APP_CODE.
T.NATIVE	An applet executes a native method to bypass a TOE Security Function such as the firewall. See #.NATIVE for details. Directly threatened asset(s): D.JCS_DATA.

4.2.5 Denial of service

Table 20Threats defined in [JC PP]

Threat	Explanation
T.RESOURCES	An attacker prevents correct operation of the Java Card System through consumption of some resources of the card: RAM or NVRAM. See #.RESOURCES for details.
	Directly threatened asset(s): D.JCS_DATA.

4.2.6 Card management

Table 21 Threats defined in [JC PP]

Threat	Explanation
T.DELETION	The attacker deletes an applet or a CAP file already in use on the card, or uses the deletion functions to pave the way for further attacks (putting the TOE in an insecure state). See #.DELETION for details). Directly threatened asset(s): D.SEC_DATA and D.APP_CODE.
T.INSTALL	The attacker fraudulently installs post-issuance of an applet on the card. This concerns either the installation of an unverified applet or an attempt to induce a malfunction in the TOE through the installation process. See #.INSTALL for details.
	Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack succeed, depending on the virulence of the installed application).

Table 22Threats defined in this ST

Threat	Explanation	
T.COMMUNICATION	The attacker exploits the communication channel established between the TOE and CAD to modify or disclose confidential data. Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA, D.APP_KEYS, D.PIN and <u>D.CM_DATA</u>	
T.UNAUTHORIZED CARD MNGT	The attacker performs unauthorized card management operations (for instance impersonates one of the actor represented on the card) in order to take benefit of the privileges or services granted to this actor on the	

Security Target

Security problem definit	Security problem definition	
Threat	Explanation	
	card such as fraudulent:	
	load of a package file	
	installation of a package file	
	personalization of an applet	
	deletion of a package file or an applet	
	• privileges update of an applet or an Issuer Security Domain	
	Directly threatened asset(s): D.APP_KEYS,	
	D.APP_C_DATA, D.APP_I_DATA, D.APP_CODE and <u>D.CM_DATA</u> .	
T.LIFE CYCLE	An attacker accesses to an application outside of its expected availability range thus violating irreversible life cycle phases of the application (for instance, an attacker repersonalizes the application).	
	Directly threatened asset(s): D.APP_I_DATA, D.APP_C_DATA and <u>D.CM_DATA</u> .	

4.2.7 Services

Table 23Threats defined in [JC PP]

Threats	Explanation
T.OBJ-DELETION	The attacker keeps a reference to a garbage collected object in order to force the TOE to execute an unavailable method, to make it to crash, or to gain access to a memory containing data that is now being used by another application. See #.OBJ-DELETION for further details. Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

4.2.8 Miscellaneous

Table 24Threats defined in [JC PP]

Threat	Explanation
T.PHYSICAL	The attacker discloses or modifies the design of the TOE, its sensitive data or application code by physical (opposed to logical) tampering means. This threat includes IC failure analysis, electrical probing, unexpected tearing, and DPA. That also includes the modification of the runtime execution of Java Card System or SCP software through alteration of the intended execution order of (set of) instructions through physical tampering techniques. This threatens all the identified assets. This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to confidentiality and integrity of code and data.

Table 25Threats defined in this ST

Threat	Explanation
<u>T.RNG</u>	An attacker may predict or obtain information about random numbers generated by the TOE.

Security Target

Security problem definition	
T.SAND BOX	An attacker may try to alter the behaviour of the OS by using the illformed/malicious code stored in the native SandBox area. The manipulation may target one of the following:
	Disclosure of operating system code
	Disclosure or modification of operating system data
	Disclosure or modification of applet code or applet data

4.3 Organizational security policies (OSPs)

This section describes the organizational security policies to be enforced with respect to the TOE environment.

Table 26 OSP	s defined in [.	JC PP]
--------------	-----------------	--------

OSP	Explanation
OSP.VERIFICATION	 This policy shall ensure the consistency between the export files used in the verification and those used for installing the verified file. The policy must also ensure that no modification of the file is performed in between its verification and the signing by the verification authority. See #.VERIFICATION for details. If the application development guidance provided by the platform developer contains recommandations related to the isolation property of the platform, this policy shall also ensure that the verification authority checks that these recommandations are applied in the application code.

Table 27OSPs defined in this ST

OSP	Explanation
OSP.SAND_BOX	This policy shall ensure that the execution of any untrusted native code (internal or from third party) shall not affect the other parts of the TOE negatively.

4.4 Assumptions

This section introduces the assumptions made on the environment of the TOE.

Assumption	Explanation
A.CAP_FILE	CAP Files loaded post-issuance do not contain native methods. The Java Card specification explicitly "does not include support for native methods" ([JCVM3], §3.3) outside the API.
A.VERIFICATION	All the bytecodes are verified at least once, before the loading, before the installation or before the execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution time.

Table 28Assumptions defined in [JC PP]

4.5 Statement of compatibility

The statement of compatibility is decribed in the document [SOC]

Security Target
Security problem definition

Security Target
Security objectives

5 Security objectives

5.1 Security objectives for the TOE

Table 29Objectives defined in this [JC PP]

Objective	Explanation
O.SID	The TOE shall uniquely identify every subject (applet, or CAP file) before granting it access to any service.
O.FIREWALL	The TOE shall ensure controlled sharing of data containers owned by applets of different CAP file or the JCRE and between applets and the TSFs. See #.FIREWALL for details.
O.GLOBAL_ARRAYS_CONFID	The TOE shall ensure that the APDU buffer that is shared by all applications is always cleaned upon applet selection.
	The TOE shall ensure that the global byte array used for the invocation of the install method of the selected applet is always cleared after the return from the install method.
O.GLOBAL_ARRAYS_INTEG	The TOE shall ensure that no application can store a reference to the APDU buffer, a global byte array created by the user through makeGlobalArray method and the byte array used for invocation of the install method of the selected applet.
O.ARRAY_VIEWS_CONFID	The TOE shall ensure that no application can read elements of an array view not having array view security attribute ATTR_READABLE_VIEW. The TOE shall ensure that an application can only read the elements of the array view within the bounds of the array view.
O. ARRAY_VIEWS_INTEG	The TOE shall ensure that no application can write to an array view not having array view security attribute ATTR_WRITABLE_VIEW. The TOE shall ensure that an application can only write within the bounds of the array view.
O.NATIVE	The only means that the Java Card VM shall provide for an application to execute native code is the invocation of a method of the Java Card API, or any additional API. See #.NATIVE for details.
O.OPERATE	The TOE must ensure continued correct operation of its security functions. See #.OPERATE for details.
O.REALLOCATION	The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the Java Card VM does not disclose any information that was previously stored in that block.
O.RESOURCES	The TOE shall control the availability of resources for the applications. See #.RESOURCES for details.
O.ALARM	The TOE shall provide appropriate feedback information upon detection of a potential security violation. See #.ALARM for details.
O.CIPHER	The TOE shall provide a means to cipher sensitive data for applications in a secure way. In particular, the TOE must support cryptographic algorithms consistent with cryptographic usage policies and standards. See #.CIPHER for details.
O.RNG	The TOE shall ensure the cryptographic quality of random number generation. For instance random numbers shall not be predictable and shall have sufficient

Security Target
Security objectives

Objective	Explanation
	entropy.
	The TOE shall ensure that no information about the produced random numbers
	is available to an attacker since they might be used for instance to generate
	cryptographic keys.
O.KEY-MNGT	The TOE shall provide a means to securely manage cryptographic keys. This concerns the correct generation, distribution, access and destruction of cryptographic keys. See #.KEY-MNGT.
O.PIN-MNGT	The TOE shall provide a means to securely manage PIN objects (including the PIN try limit, PIN try counter and states). If the PIN try limit is reached, no further PIN authentication must be allowed.
	NOTE: PIN objects may play key roles in the security architecture of client applications. The way they are stored and managed in the memory of the smart card must be carefully considered, and this applies to the whole object rather than the sole value of the PIN. For instance, the try limit and the try counter's value are as sensitive as that of the PIN and the TOE must restrict their modification only to authorized applications such as the card manager.
O.TRANSACTION	The TOE must provide a means to execute a set of operations atomically. See #.TRANSACTION for details.
O.OBJ-DELETION	The TOE shall ensure the object deletion shall not break references to objects. See #.OBJ-DELETION for further details.
O.DELETION	The TOE shall ensure that both applet and CAP file deletion perform as
	expected. See #.DELETION for details.
O.LOAD	The TOE shall ensure that the loading of a CAP file into the card is safe.
	Besides, for code loaded post-issuance, the TOE shall verify the integrity and authenticity evidences generated during the verification of the application CAP file by the verification authority. This verification by the TOE shall occur during the loading or later during the install process.
	NOTE: Usurpation of identity resulting from a malicious installation of an applet on the card may also be the result of perturbing the communication channel linking the CAD and the card. Even if the CAD is placed in a secure environment, the attacker may try to capture, duplicate, permute or modify the CAP file sent to the card. He may also try to send one of its own applications as if it came from the card issuer. Thus, this objective is intended to ensure the integrity and authenticity of loaded CAP files.
O.INSTALL	The TOE shall ensure that the installation of an applet performs as expected (See #.INSTALL for details).
	Besides, for code loaded post-issuance, the TOE shall verify the integrity and authenticity evidences generated during the verification of the application CAP file by the verification authority. If not performed during the loading process, this verification by the TOE shall occur during the install process.

Note: O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION, O.RNG and O.CIPHER are actually provided to applets in the form of Java Card APIs. Additionally, this Java Card contains Vendor-specific libraries for ICAO secure messaging, a special hardened PACE API and other utility APIs. Those proprietary libraries are evaluated as part of the TOE. Refer to [APISPEC] for the list of API packages.

Table 30 Ojectives defined in this ST

Final

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target
Security objectives

Objective	Explanation
O.CARD-MANAGEMENT	The TOE shall provide card management functionalities (loading, installation, deletion of applications and GP registry updates) in charge of the life cycle of the whole Java card and installed applications (applets).
	The card manager, the application with specific rights responsible for the administration of the smart card, shall control the access to card management functions. It shall also implement the card issuer's policy on card management.
	NOTE: The card manager will be tightly connected in practice with the rest of the TOE, which in return shall very likely rely on the card manager for the effective enforcement of some of its security functions.
	The mechanism used to ensure authentication of the TOE issuer, that manages the TOE, or of the Service Providers owning a Security Domain with card management privileges is a secure channel. This channel will be used afterwards to protect commands exchanged with the TOE in confidentiality and integrity.
	The platform guarantees that only the ISD can manage the applications on the card. This is done accordingly with the card issuer's policy on card management. The actor performing the operation must beforehand authenticate with the Security Domain.
O.COMMUNICATION	The TOE shall authenticate the origin of the card management requests that the card receives, and authenticate itself to the remote actor. It shall verify the integrity of the card management requests that it receives and be able, when it's needed, to process card management requests containing encrypted data. The authentication method shall be resistant against replay attacks.
<u>O.SCP.IC</u>	The SCP shall provide all IC security features against physical attacks.
	This security objective refers to the point (7) of the security aspect #.SCP:
	It is required that the IC is designed in accordance with a well-defined set of policies and Standards (as specified in [ST_IC]), and will be tamper resistant to actually prevent an attacker from extracting or altering security data (like cryptographic keys) by using commonly employed techniques (physical probing and sophisticated analysis of the chip). This especially matters to the management (storage and operation) of cryptographic keys.
O.SCP.RECOVERY	If there is a loss of power, or if the smart card is withdrawn from the CAD while an
	operation is in progress, the SCP must allow the TOE to eventually complete the interrupted operation successfully, or recover to a consistent and secure state.
	This security objective refers to the security aspect #.SCP(1): The smart card platform must be secure with respect to the SFRs. Then after a power loss or sudden card removal prior to completion of some communication protocol, the SCP will allow the TOE on the next power up to either complete the interrupted
O.SCP.SUPPORT	operation or revert to a secure state.The SCP shall support the TSFs of the TOE.
	This security objective refers to the security aspects 2, 3, 4 and 5 of #.SCP:
	 (2) It does not allow the TSFs to be bypassed or altered and does not allow access to other low-level functions than those made available by the packages of the API. That includes the protection of its private data and code (against disclosure or modification) from the Java Card System.
	(3) It provides secure low-level cryptographic processing to the Java Card System.
	(4) It supports the needs for any update to a single persistent object or class field
Final	36 Rev 1.1
Security Target
Security objectives

Objective	Explanation
	to be atomic, and possibly a low-level transaction mechanism.
	(5) It allows the Java Card System to store data in "persistent technology memory" or in volatile memory, depending on its needs (for instance, transient objects must not be stored in non-volatile memory). The memory model is structured and allows for low-level control accesses (segmentation fault detection).
O.SCP.RNG	The TOE will ensure the cryptographic quality of random number generation. For instance random numbers shall not be predictable and shall have sufficient entropy.
<u>O.SAND BOX</u>	The TOE shall provide the separation of the native sand box area and the TOE.

5.2 Security objectives for the operational environment

This section introduces the security objectives to be achieved by the environment.

Objective	Explanation
OE.CAP_FILE	No CAP file loaded post-issuance shall contain native methods.
OE.VERIFICATION	All the bytecodes shall be verified at least once, before the loading, before the installation or before the execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution time. See #.VERIFICATION for details.
	Additionally, the applet shall follow all the recommendations, if any, mandated in the platform guidance for maintaining the isolation property of the platform.
	NOTE: Constraints to maintain the isolation property of the platform are provided by the platform developer in application development guidance. The constraints apply to all application code loaded in the platform.
OE.CODE-EVIDENCE	For application code loaded pre-issuance, evaluated technical measures implemented by the TOE or audited organizational measures must ensure that loaded application has not been changed since the code verifications required in OE.VERIFICATION.
	For application code loaded post-issuance and verified off-card according to the requirements of OE.VERIFICATION, the verification authority shall provide digital evidence to the TOE that the application code has not been modified after the code verification and that he is the actor who performed code verification.
	For application code loaded post-issuance and partially or entirely verified on-card, technical measures must ensure that the verification required in OE.VERIFICATION is performed. On-card bytecode verifier is out of the scope of this Security Target.
	NOTE: For application code loaded post-issuance and verified off-card, the integrity and authenticity evidence can be achieved by electronic signature of the application code, after code verification, by the actor who performed

 Table 31
 Objectives for the operational environment

public SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

infineon

Security Target

Security objectives	
Objective	Explanation
	verification.

5.3 Security objectives rationale

5.3.1 Threats

Table 32 Threats Threat Explanation T.CONFID-APPLI-DATA This threat is countered by the security objective for the operational environment regarding bytecode verification (OE.VERIFICATION). It is also covered by the isolation commitments stated in the (O.FIREWALL) objective. It relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE) objective. As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide clear warning and error messages, so that the appropriate counter-measure can be taken. The objectives O.CARD-MANAGEMENT and O.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively. The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these latter objectives contribute to counter. As applets may need to share some data or communicate with the CAD, cryptographic functions are required to actually protect the exchanged information (O.CIPHER, O.RNG). Remark that even if the TOE shall provide access to the appropriate TSFs, it is still the responsibility of the applets to use them. Keys, PIN's are particular cases of an application's sensitive data (the Java Card System may possess keys as well) that ask for appropriate management (O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL) shall contribute in covering this threat by controlling the sharing of the global PIN between the applets. Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a resource shared by all applications. The disclosure of such data is prevented by the security objective O.GLOBAL_ARRAYS_CONFID. An applet might share data buffer with another applet using array views without the array view security attribute ATTR_READABLE_VIEW. The disclosure of data of the applet creating the array view is prevented by the security object O.ARRAY_VIEWS_CONFID. Finally, any attempt to read a piece of information that was previously used by an application but has been logically deleted is countered by the O.REALLOCATION objective. That objective states that any information that was formerly stored in a memory block shall be cleared before the block is reused. T.CONFID-JCS-CODE This threat is countered by the list of properties described in the (#.VERIFICATION) security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform is used for its intended purpose and in the intended scope of accessibility. As none of those instructions enables reading a piece of code, no

Security Target
Security objectives

Threat	Explanation
	Java Card applet can therefore be executed to disclose a piece of code. Native applications are also harmless because of the objective O.NATIVE, so no application can be run to disclose a piece of code.
	The (#.VERIFICATION) security aspect is addressed in this ST by the objective for the environment OE.VERIFICATION. The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively.
T.CONFID-JCS-DATA	 This threat is covered by bytecode verification (OE.VERIFICATION) and the isolation commitments stated in the (O.FIREWALL) security objective. This latter objective also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.
	As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide clear warning and error messages, so that the appropriate counter-measure can be taken.
	The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively.
	The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these latter objectives contribute to counter.
T.INTEG-APPLI-CODE	This threat is countered by the list of properties described in the (#.VERIFICATION) security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform is used for its intended purpose and in the intended scope of accessibility. As none of these instructions enables modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of code. Native applications are also harmless because of the objective O.NATIVE, so no application can run to modify a piece of code.
	The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the environment OE.VERIFICATION.
	The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively.
	The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity and authenticity evidences exist for the application code loaded into the platform.
T.INTEG-APPLI- CODE.LOAD	This threat is countered by the security objective O.LOAD which ensures that the loading of CAP file is done securely and thus preserves the integrity of CAP files' code.
	The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code loaded into the platform has not been changed after code verification, which ensures code integrity and authenticity. By controlling the access to card management functions such as the installation, update or deletion of applets the objective O.CARD-MANAGEMENT contributes to cover this threat.
T.INTEG-APPLI-DATA	This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on the correct identification of applets stated in (O.SID).

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

Threat	Explanation
	Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.
	As the firewall is a software tool automating critical controls, the objective
	O.ALARM asks for it to provide clear warning and error messages, so that the
	appropriate counter-measure can be taken.
	The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively.
	The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code loaded into the platform has not been changed after code verification, which ensures code integrity and authenticity. The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these latter objectives contribute to counter.
	Concerning the confidentiality and integrity of application sensitive data, as applets may need to share some data or communicate with the CAD, cryptographic functions are required to actually protect the exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN's are particular cases of an application's sensitive data (the Java Card System may possess keys as well)
	that ask for appropriate management (O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL) is also concerned.
	Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a resource shared by all applications. The integrity of the information stored in that buffer is ensured by the objective O.GLOBAL_ARRAYS_INTEG.
	An applet might share data buffer with another applet using array views without the array view security attribute ATTR_WRITABLE_VIEW. The integrity of data of the applet creating the array view is ensured by the security objective O.ARRAY_VIEWS_INTEG.
	Finally, any attempt to read a piece of information that was previously used by an application but has been logically deleted is countered by the O.REALLOCATION objective. That objective states that any information that was formerly stored in a memory block shall be cleared before the block is reused.
T.INTEG-APPLI- DATA.LOAD	This threat is countered by the security objective O.LOAD which ensures that the loading of CAP files is done securely and thus preserves the integrity of applications data.
	The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code loaded into the platform has not been changed after code verification, which ensures code integrity and authenticity. By controlling the access to card management functions such as the installation, update or deletion of applets the objective O.CARD-MANAGEMENT contributes to cover this threat.
T.INTEG-JCS-CODE	This threat is countered by the list of properties described in the (#.VERIFICATION) security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform is used for its intended purpose and in the intended scope of accessibility. As none of these instructions enables modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of code. Native

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target
Security objectives

Threat	Explanation
Incut	 applications are also harmless because of the objective O.NATIVE, so no application can be run to modify a piece of code. The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the environment OE.VERIFICATION. The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively.
	The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code loaded into the platform has not been changed after code verification, which ensures code integrity and authenticity.
T.INTEG-JCS-DATA	 This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE) objective. As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide clear warning and error messages, so that the appropriate counter-measure can be taken. The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this threat by controlling the access to card management functions and by checking the bytecode, respectively. The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code loaded into the platform has not been changed after code verification, which ensures code integrity and authenticity. The objectives
	O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these latter objectives contribute to counter.
T.SID.1	As impersonation is usually the result of successfully disclosing and modifying some assets, this threat is mainly countered by the objectives concerning the isolation of application data (like PINs), ensured by the (O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to face this threat. It should be noticed that the AIDs, which are used for applet identification, are TSF data. In this configuration, usurpation of identity resulting from a malicious installation of an applet on the card is covered by the objective O.INSTALL.
	 The installation parameters of an applet (like its name) are loaded into a global array that is also shared by all the applications. The disclosure of those parameters (which could be used to impersonate the applet) is countered by the objectives O.GLOBAL_ARRAYS_CONFID and O.GLOBAL_ARRAYS_INTEG. The objective O.CARD-MANAGEMENT contributes, by preventing usurpation of identity resulting from a malicious installation of an applet on the card, to counter this threat.
T.SID.2	 This is covered by integrity of TSF data, subject-identification (O.SID), the firewall (O.FIREWALL) and its good working order (O.OPERATE). The objective O.INSTALL contributes to counter this threat by ensuring that installing an applet has no effect on the state of other applets and thus can't change the TOE's attribution of privileged roles. The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the O.OPERATE objective of the TOE, so they are indirectly related to the threats that

Security Target Security objectives

Threat	Explanation
	this latter objective contributes to counter.
T.EXE-CODE.1	Unauthorized execution of a method is prevented by the objective OE.VERIFICATION. This threat particularly concerns the point (8) of the security aspect #.VERIFICATION (access modifiers and scope of accessibility for classes, fields and methods). The O.FIREWALL objective is also concerned, because it prevents the execution of non-shareable methods of a class instance by any subject apart from the class instance owner.
T.EXE-CODE.2	Unauthorized execution of a method fragment or arbitrary data is prevented by the objective OE.VERIFICATION. This threat particularly concerns those points of the security aspect related to control flow confinement and the validity of the method references used in the bytecodes.
T.NATIVE	This threat is countered by O.NATIVE which ensures that a Java Card applet can only access native methods indirectly that is, through an API. OE.CAP_FILE also covers this threat by ensuring that no CAP files containing native code shall be loaded in post-issuance. In addition to this, the bytecode verifier also prevents the program counter of an applet to jump into a piece of native code by confining the control flow to the currently executed method (OE.VERIFICATION).
T.RESOURCES	An attacker prevents correct operation of the Java Card System through consumption of some resources of the card: RAM or NVRAM. See #.RESOURCES for details. Directly threatened asset(s): D.JCS_DATA.
T.DELETION	This threat is covered by the O.DELETION security objective which ensures that both applet and CAP file deletion perform as expected. The objective <u>O.CARD-MANAGEMENT</u> controls the access to card management functions and thus contributes to cover this threat.
T.INSTALL	This threat is covered by the security objective O.INSTALL which ensures that the installation of an applet performs as expected and the security objectives O.LOAD which ensures that the loading of a CAP file into the card is safe. The objective <u>O.CARD-MANAGEMENT</u> controls the access to card management functions and thus contributes to cover this threat.
T.COMMUNICATION	This threat is covered by the <u>O.COMMUNICATION</u> security objective which authenticates the origin of the card management and protects integrity and confidentiality of transmitted data.
<u>T.UNAUTHORIZED_CA</u> <u>RD_MNGT</u>	 This threat is covered by the following security objectives: <u>O.CARD-MANAGEMENT</u> controls the access to card management functions such as the loading, installation, deletion of applets. <u>O.COMMUNICATION</u> prevents unauthorized users from initiating a malicious card management operation and protects the integrity of the card management data while it is in transit to the Java Card.
T.LIFE CYCLE	This threat is covered by the security objective <u>O.CARD-MANAGEMENT</u> that controls the access to card management functions such as the loading, installation, deletion of applets and prevent attacks intended to modify or exploit the current life cycle of applications.
T.OBJ-DELETION	This threat is covered by the O.OBJ-DELETION security objective which ensures that object deletion shall not break references to objects.
T.PHYSICAL	Covered by <u>O.SCP.IC</u> . Physical protections rely on the underlying platform and are
Final	42 Rev 1.

Security Target

Security objectives	
Threat	Explanation
	therefore an environmental issue.
T.RNG Covered by <u>O.SCP.RNG</u>	
T.SAND BOX	Covered by O.SAND_BOX

Table 33Organisational security poliy

OSP	Explanation
OSP.VERIFICATION	This policy is upheld by the security objective of the environment OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once, before the loading, before the installation or before the execution in order to ensure that each bytecode is valid at execution time.
	This policy is also upheld by the security objective of the environment OE.CODE- EVIDENCE which ensures that evidences exist that the application code has been verified and not changed after verification, and by the security objective for the TOE O.LOAD which shall ensure that the loading of a CAP file into the card is safe.

Table 34Assumptions

Assumption	Explanation
A.CAP_FILE	This assumption is covered by OECAP_FILE.
A.VERIFICATION	This assumption is covered by OE.VERIFICATION which ensures that bytecode verification is done on the Applet and OE.CODE-EVIDENCE which ensures that the code is not altered after bytecode verification

5.3.2 SPD and security objectives

Table 35 Threats and Security Objectives - Coverage

Objectives
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5
As [JC PP] plus remapping from Table 5

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

infineon

Security objectives		
Threat	Objectives	
T.INSTALL	As [JC PP] plus remapping from Table 5	
T.OBJ-DELETION	As [JC PP] plus remapping from Table 5	
T.PHYSICAL	As [JC PP] plus remapping from Table 5	
T.COMMUNICATION	O.COMMUNICATION	
T.UNAUTHORIZED CARD MNGT	O.CARD-MANAGEMENT, O.COMMUNICATION	
T.LIFE CYCLE	O.CARD-MANAGEMENT	
<u>T.RNG</u>	O.SCP.RNG	
T.SAND_BOX	O.SAND_BOX	

Table 36 Security Objectives and Threats - Coverage

Objective	Threats
O.SID	As [JC PP]
O.FIREWALL	As [JC PP]
O.GLOBAL_ARRAYS_CONFID	As [JC PP]
O.GLOBAL_ARRAYS_INTEG	As [JC PP]
O.ARRAY_VIEWS_CONFID	As [JC PP]
O.ARRAY_VIEWS_INTEG	As [JC PP]
O.NATIVE	As [JC PP]
O.OPERATE	As [JC PP]
O.REALLOCATION	As [JC PP]
O.RESOURCES	As [JC PP]
O.ALARM	As [JC PP]
O.CIPHER	As [JC PP]
O.RNG	As [JC PP]
O.KEY-MNGT	As [JC PP]
O.PIN-MNGT	As [JC PP]
O.TRANSACTION	As [JC PP]
O.OBJ-DELETION	As [JC PP]
O.DELETION	As [JC PP]
O.LOAD	As [JC PP]
O.INSTALL	As [JC PP]
OE.CAP_FILE	As [JC PP]
OE.VERIFICATION	As [JC PP]
OE.CODE-EVIDENCE	As [JC PP]
O.CARD-MANAGEMENT	T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE, T.CONFID-JCS-DATA, T.INTEG- APPLI-CODE, T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-DATA, T.INTEG-APPLI- DATA.LOAD, T.INTEG-JCS-CODE, T.INTEG-JCS-DATA, T.SID.1, T.DELETION, T.INSTALL
<u>O.SCP.IC</u>	T.PHYSICAL

Security Target

Security objectives	
O.SCP.RECOVERY	T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.2, T.RESOURCES
O.SCP.SUPPORT	T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.2, T.RESOURCES
O.SCP.RNG	T.RNG
O.SAND_BOX	T.SAND BOX

Table 37 OSPs and Security Objectives - Coverage

OSP	Objectives
OSP.VERIFICATION	As [JC PP]
OSP.SAND_BOX	O.SAND_BOX

Table 38 Security Objectives and OSPs - Coverage

Objective	OSPs
O.LOAD	As [JC PP]
OE.VERIFICATION	As [JC PP]
OE.CODE-EVIDENCE	As [JC PP]

Table 39 Assumptions and Security Objectives for the Operational Environment - Coverage

Assumption	Objectives
A.CAP_FILE	As [JC PP]
A.VERIFICATION	As [JC PP]]

Table 40 Security Objectives for the Operational Environment and Assumptions - Coverage

Objective	Assumptions
OE.CAP_FILE	As [JC PP]
OE.VERIFICATION	As [JC PP]
OE.CODE-EVIDENCE	As [JC PP]

Security Target
Extended components definition

6 Extended components definition

The following extended SFRs are used in this ST.

• FCS_RNG

This SFR is defined in [JC PP], chapter 7.1

Security Target
Security requirements

7 Security requirements

7.1 Notation

The following convention has been used for marking the Common Criteria operations in SFRs.

- Underlined text in SFRs without footnotes denotes CC operations defined in [JC PP]
- Underlined text in SFRs with footnotes denotes CC operations defined in this ST.

Please note that references in square brackets will never be underlined due to technical limitations of the text processing engine.

The term SD referes to the Issuer Security Domain (ISD) in this ST.

7.2 Security functional requirements

This section states the security functional requirements for the Java Card System - Open configuration. The groups CoreG_LC, InstG, ADELG, ODELG, CarG have been taken form the Java Card Protection Profile [JC PP].

The group CMGRG has been taken form the Java Card USIM Protection profile [JC USIM PP]. Please note that the SFRs from [JC USIM PP] have been adapted from the USIM profile to the ID profile which is used in this ST. The SFRs from [JC USIM PP] have been reused as inspiration only and neither strict nor demonstrative conformance is claimed to [JC USIM PP].

The group SCPG refers to SFRs which are directly related to SFRs form the Security Traget of the underlying hardware platform [ST_IC].

Group	Explanation
Core with Logical Channels (CoreG_LC)	The CoreG_LC contains the requirements concerning the runtime environment of the Java Card System implementing logical channels. This includes the firewall policy and the requirements related to the Java Card API. Logical channels are a Java Card specification version 3.1 feature.
Installation (InstG)	The InstG contains the security requirements concerning the installation of post- issuance applications. It does not address card management issues in the broad sense, but only those security aspects of the installation procedure that are related to applet execution.
Applet deletion (ADELG)	The ADELG contains the security requirements for erasing installed applets from the card, a feature introduced in Java Card specification version 3.1.
Object deletion (ODELG)	The ODELG contains the security requirements for the object deletion capability. This provides a safe memory recovering mechanism. This is a Java Card specification version 3.1 feature.
Secure carrier (CarG)	The CarG group has been refined and extended by the security requirements of the CMGRG group
Card manager (CMGRG)	The CMGRG group contains the security requirements for the GlobalPlatform card manager.
Hardware IC support (SCPG)	This group contains security requirements which are directly related to the underlying hardware platform.
SandBox (SandBoxG)	This group contains the security requirements related to the SandBox framework.

Table 41 SFR groups

Security Target Security requirements

The SFRs refer to all potentially applicable subjects, objects, information, operations and security attributes.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the TOE include people or institutions (like the applet developer, the card issuer, the verification authority), hardware (like the CAD where the card is inserted or the PCD) and software components (like the application packages installed on the card). Some of the users may just be aliases for other users. For instance, the verification authority in charge of the bytecode verification of the applications may be just an alias for the card issuer.

Note: The content of Table 42 to Table 48 is copied from [JC PP]. It does not contain the respective elements from the card manager functionality added in this ST (see section 7.2.6). The subject S.BCV has been removed because the byte code verifier belongs to the operational environment and is therefor not a valid subject for this TOE.

Subjects	Explanation
S.ADEL	The applet deletion manager which also acts on behalf of the card issuer. It may be an applet ([JCRE3], §11), but its role asks anyway for a specific treatment from the security viewpoint. This subject is unique and is involved in the ADEL security policy defined in §7.1.3.1.
S.APPLET	Any applet instance.
S.CAD	The CAD represents off-card entity that communicates with the S.INSTALLER.
S.INSTALLER	The installer is the on-card entity which acts on behalf of the card issuer. This subject is involved in the loading of CAP files and installation of applets.
S.JCRE	The runtime environment under which Java programs in a smart card are executed.
S.JCVM	The bytecode interpreter that enforces the firewall at runtime.
S.LOCAL	Operand stack of a JCVM frame, or local variable of a JCVM frame containing an object or an array of references.
S.MEMBER	Any object's field, static field or array position.
S.CAP_FILE	A CAP file may contain multiple Java language packages. A package is a namespace within the Java programming language that may contain classes and interfaces. A CAP file may contain packages that define either user library, or one or several applets. A CAP file compliant with Java Card Specifications version 3.1 may contain multiple Java language packages. An EXTENDED CAP file as specified in Java Card Specifications version 3.1 may contain only applet packages, only library packages o a combination of library packages. A COMPACT CAP file as specified in Java Card Specifications version 3.1 or CAP files compliant to previous versions of Java Card Specification, MUST contain only a single package representing a library or one or more applets.
S.SandBoxNativeCod	The third party native library code executed using the SandBox framework.

Table 42 Subjects

Table 43 Objects

Object	Explanation
O.APPLET	Any installed applet, its code and data.
O.CODE_CAP_FILE	The code of a CAP file, including all linking information. On the Java Card platform, a CAP file is the installation unit.
O.JAVAOBJECT	Java class instance or array. It should be noticed that KEYS, PIN, arrays and applet
The all	40

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

Security requirements	
Object	Explanation
	instances are specific objects in the Java programming language.
O.SandBox_Content	The code and data of the native library present in the SandBox area. This includes the SandBox framework functionality provided by the TOE.
O.Non_SandBox_Content	Any code and data elements not assigned to the native code library
	residing in the SandBox.
O.SandBox_SFR	The list of Special Functional Registers accessible to the native code in the SandBox area.
O.Non_SandBox_SFR	The list of Special Functional Registers not accessible to the native code in the SandBox area. E.g. SFRs that are required to configure the MPU configuration table.

Table 44 Information

Information	Explanation
I.APDU	Any APDU sent to or from the card through the communication channel.
I.DATA	JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned instances of APDU class and byte array for install method.

Security attributes linked to these subjects, objects and information are described in the following table with their values:

Security attribute	Explanation/Value
Active Applets	The set of the active applets' AIDs. An active applet is an applet that is selected on at least one of the logical channels.
Applet Selection Status	"Selected" or "Deselected".
Applet's version number	The version number of an applet indicated in the export file.
CAP File AID	The AID of a CAP file.
Context	CAP file AID or "Java Card RE".
Currently Active Context	Package AID or "Java Card RE".
Dependent package AID	Allows the retrieval of the Package AID and Applet's version number ([JCVM3], §4.5.2).
LC Selection Status	Multiselectable, Non-multiselectable or "None".
LifeTime	CLEAR_ON_DESELECT or PERSISTENT (*).
Owner	The Owner of an object is either the applet instance that created the object or the CAP file (library) where it has been defined (these latter objects can only be arrays that initialize static fields of the CAP file). The owner of a remote object is the applet instance that created the object.
Package AID	The AID of each package indicated in the export file.
Registered Applets	The set of AID of the applet instances registered on the card.
Resident CAP files	The set of AIDs of the CAP files already loaded on the card.
Selected Applet	CAP file AID or "None".

Table 45Security attributes

Security Target

Security requirements			
Security attribute	Explanation/Value		
Context			
Sharing	Standards, SIO, Array View, Java Card RE entry point or global array.		
Static References	Static fields of a CAP file may contain references to objects. The Static References attribute records those references.		
Special Function Registers	SFRs of the HW that allows to do a set of operations.		
MPU Configuration Table	Memory areas which can be accessed for read or write operations or code execution.		
CPU execution mode	The CPU execution mode either can be privileged or unprivileged.		

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed only when the Currently Active Context is the object's context.

Table 46Operations

Operation	Explanation
OP.ARRAY_ACCESS(O.JAVAOBJECT, field)	Read/Write an array component.
OP.ARRAY_LENGTH (O.JAVAOBJECT, field)	Get length of an array component.
OP.ARRAY_T_ALOAD(O.JAVAOBJECT, field)	Read from an array component
OP.ARRAY_T_ASTORE(O.JAVAOBJECT, field)	Write to an array component
OP.ARRAY_AASTORE(O.JAVAOBJECT, field)	Store into reference array component
OP.CREATE(Sharing, LifeTime) (*)	Creation of an object (new,
	makeTransient or createArrayView call).
OP.DELETE_APPLET (O.APPLET,)	Delete an installed applet and its objects, either logically or physically.
OP.DELETE_CAP_FILE (O.CODE_PKG,)	Delete a CAP file, either logically or physically.
OP.DELETE_CAP_FILE_APPLET(O.CODE_CAP_FILE,)	Delete a CAP file, either logically or physically.
OP.INSTANCE_FIELD(O.JAVAOBJECT, field)	Read/Write a field of an instance of a class in the Java programming language.
OP.INVK_VIRTUAL (O.JAVAOBJECT, method, arg1,)	Invoke a virtual method (either on a class instance or an array object).
OP.INVK_INTERFACE (O.JAVAOBJECT, method, arg1,)	Invoke an interface method.
OP.JAVA ()	Any access in the sense of [JCRE3], §6.2.8. It stands for one of the operations OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW and OP.TYPE_ACCESS.
OP.PUT(S1,S2,I)	Transfer a piece of information I from S1 to S2.
OP.THROW(O.JAVAOBJECT)	Throwing of an object (athrow, see [JCRE3], §6.2.8.7).
OP.TYPE_ACCESS(O.JAVAOBJECT, class)	Invoke checkcast or instance of on an object in order to access to classes (standard or shareable interfaces objects).
OP.SAND_BOX_ACCESS	Read, write or any execution operations to access the
Final	50 Rev 1.

public SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Security Target

Security requirements			
Operation	Explanation		
	memory area.		
OP.SAND_BOX_ACCESS_SFR	Access the Special Function Register.		

Operations (prefixed with "OP") are described in the following table. Each operation has parameters given between brackets, among which there is the "accessed object", the first one, when applicable. Parameters may be seen as security attributes that are under the control of the subject performing the operation.

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects are not allowed. For instance, during the creation of an object, the Java Card class attribute's value is chosen by the creator.

7.2.1 CoreG_LC security functional requirements

7.2.1.1 FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL

The TSF shall enforce the <u>FIREWALL access control SFP</u> on <u>S.CAP_FILE, S.JCRE, S.JCVM, O.JAVAOBJECT</u> and all operations among subjects and objects covered by the SFP.

Refinement: The operations involved in the policy are:

- OP.CREATE
- OP.INVK_INTERFACE
- OP.INVK_VIRTUAL
- OP.JAVA
- OP.THROW
- OP.TYPE_ACCESS
- OP.ARRAY_LENGTH
- OP.ARRAY_T_LOAD
- OP.ARRAY_T_ASTORE
- OP.ARRAY_AASTORE

FDP_ACC.2.2/FIREWALL

The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

Note: It should be noticed that accessing array's components of a static array, and more generally fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

7.2.1.2 FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL

The TSF shall enforce the FIREWALL access control SFP to objects based on the following:

Table 47Security attributes

	Subjects/objects	Security attributes
--	------------------	---------------------

Security Target

Security requirements			
S.CAP_FILE LC Selection Status			
S.JCVM	Active Applets, Currently Active Context		
S.JCRE	Selected Applet Context		
O.JAVAOBJECT	Sharing, Context, LifeTime		
	·		

FDP_ACF.1.2/FIREWALL

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- <u>R.JAVA.1 ([JCRE3], §6.2.8): S.CAP_FILE may freely perform OP.INVK_VIRTUAL, OP.INVK_INTERFACE,</u> <u>OP.THROW or OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has value "JCRE entry</u> <u>point" or "global array".</u>
- <u>R.JAVA.2 ([JCRE3], §6.2.8): S.CAP_FILE may freely perform OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,</u> <u>OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose Sharing attribute has</u> <u>value "Standard" and whose Lifetime attribute has value "PERSISTENT" only if O.JAVAOBJECT's Context</u> <u>attribute has the same value as the active context.</u>
- <u>R.JAVA.3 ([JCRE3], §6.2.8.10): S.CAP_FILE may perform OP.TYPE_ACCESS upon an O.JAVAOBJECT with</u> <u>Context attribute different from the currently active context, whose Sharing attribute has value "SIO" only if</u> <u>O.JAVAOBJECT is being cast into (checkcast) or is being verified as being an instance of (instanceof) an</u> <u>interface that extends the Shareable interface.</u>
- <u>R.JAVA.4 ([JCRE3], §6.2.8.6): S.CAP_FILE may perform OP.INVK_INTERFACE upon an O.JAVAOBJECT with</u> <u>Context attribute different from the currently active context, whose Sharing attribute has the value "SIO", and</u> <u>whose Context attribute has the value "CAP File AID", only if the invoked interface method extends the</u> <u>Shareable interface and one of the following conditions applies:</u>
 - The value of the attribute Selection Status of the package whose AID is "CAP File AID" is "Multiselectable",
 - The value of the attribute Selection Status of the package whose AID is "CAP File AID" is "Nonmultiselectable", and either "CAP File AID" is the value of the currently selected applet or otherwise "CAP File AID" does not occur in the attribute Active Applets.
- <u>R.JAVA.5: S.CAP_FILE may perform OP.CREATE upon O.JAVAOBJECT only if the value of the Sharing parameter is "Standard" or "SIO".</u>
- <u>R.JAVA.6 ([JCRE3], §6.2.8): S.CAP_FILE may freely perform OP.ARRAY_ACCESS or OP.ARRAY_LENGTH upon</u> any O.JAVAOBJECT whose Sharing attribute has value "global array".

FDP_ACF.1.3/FIREWALL

The TSF shall explicitly authorise access of subjects to objects based on the following additional rules:

- <u>1) The subject S.JCRE can freely perform OP.JAVA(") and OP.CREATE, with the exception given in</u> FDP_ACF.1.4/FIREWALL, provided it is the Currently Active Context.
- 2) The only means that the subject S.JCVM shall provide for an application to execute native code is the invocation of a Java Card API method (through OP.INVK INTERFACE or OP.INVK VIRTUAL).

FDP_ACF.1.4/FIREWALL

The TSF shall explicitly deny access of subjects to objects based on the following additional rules:

Security Target

Security requirements

- <u>1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute has value</u>
 <u>"CLEAR ON DESELECT" if O.JAVAOBJECT's Context attribute is not the same as the Selected Applet Context.</u>
- <u>2) Any subject attempting to create an object by the means of OP.CREATE and a "CLEAR ON DESELECT"</u> <u>LifeTime parameter if the active context is not the same as the Selected Applet Context.</u>
- <u>3) S.CAP_FILE performing OP.ARRAY_AASTORE of the reference of an O.JAVAOBJECT whose sharing attribute</u> <u>has value "global array" or "Temporary".</u>
- <u>4) S.CAP_FILE performing OP.PUTFIELD or OP.PUTSTATIC of the reference of an O.JAVAOBJECT whose sharing attribute has value "global array" or "Temporary"</u>
- <u>5)</u> R.JAVA.7 ([JCRE3], §6.2.8.2): S.CAP_FILE performing OP.ARRAY_T_ASTORE into an array view without <u>ATTR_WRITABLE_VIEW access attribute.</u>
- <u>6)</u> R.JAVA.8 ([JCRE3], §6.2.8.2):S.CAP_FILE performing OP.ARRAY_T_ALOAD into an array view without ATTR_READABLE_VIEW access attribute.

7.2.1.3 FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM

The TSF shall enforce the JCVM information flow control SFP on S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

7.2.1.4 FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM

The TSF shall enforce the JCVM information flow control SFP based on the following types of subject and information security attributes:

Table 48 Security attributes

Subjects	Security attributes
S.JCVM	Currently Active Context

FDP_IFF.1.2/JCVM

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold:

- <u>An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the Currently Active Context is "Java Card RE";</u>
- other OP.PUT operations are allowed regardless of the Currently Active Context's value.

FDP_IFF.1.3/JCVM [Editorially refined]

The TSF shall enforce <u>no additional rule</u>¹.

FDP_IFF.1.4/JCVM

The TSF shall explicitly authorise an information flow based on the following rules: <u>none²</u>.

¹ [assignment: additional information flow control SFP rules]

² [assignment: rules, based on security attributes, that explicitly authorise information flows]

Security Target Security requirements FDP_IFF.1.5/JCVM

The TSF shall explicitly deny an information flow based on the following rules: <u>none</u>¹.

7.2.1.5 FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>allocation of the resource to</u> the following objects: <u>class instances and arrays</u>.

Note: The semantics of the Java programming language requires for any object field and array position to be initialized with default values when the resource is allocated [JCVM3], §2.5.1.

7.2.1.6 FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE

The TSF shall enforce the <u>FIREWALL access control SFP</u> to restrict the ability to <u>modify</u> the security attributes <u>Selected Applet Context</u> to <u>the Java Card RE</u>.

Note: The modification of the Selected Applet Context should be performed in accordance with the rules given in[JCRE3], §4 and [JCVM3], §3.4.

7.2.1.7 FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM

The TSF shall enforce the <u>FIREWALL access control SFP and the JCVM information flow control SFP</u> to restrict the ability to <u>modify</u> the security attributes <u>Currently Active Context and Active Applets to the Java Card VM (S.JCVM)</u>.

Note: The modification of the Currently Active Context should be performed in accordance with the rules given in[JCRE3], §4 and [JCVM3], §3.4.

7.2.1.8 FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM

The TSF shall ensure that only secure values are accepted for <u>all the security attributes of subjects and objects</u> <u>defined in the FIREWALL access control SFP and the JCVM information flow control SFP</u>.

7.2.1.9 FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL

The TSF shall enforce the <u>FIREWALL access control SFP</u> to provide <u>restrictive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL [Editorially Refined]

The TSF shall not allow <u>any role</u> to specify alternative initial values to override the default values when an object or information is created.

¹ [assignment: rules, based on security attributes, that explicitly deny information flows]

Security Target

Security requirements

7.2.1.10 FMT_MSA.3/JCVM Static attribute initialization

FMT_MSA.3.1/JCVM

The TSF shall enforce the <u>JCVM information flow control SFP</u> to provide <u>restrictive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM [Editorially Refined]

The TSF shall not allow <u>any role</u> to specify alternative initial values to override the default values when an object or information is created.

7.2.1.11 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions:

• Modify the Currently Active Context, the Selected Applet Context and the Active Applets.

7.2.1.12 FMT_SMR.1 Security roles

FMT_SMR.1.1

The TSF shall maintain the roles

- Java Card RE (JCRE),
- Java Card VM (JCVM).

FMT_SMR.1.2

The TSF shall be able to associate users with roles.

7.2.1.13 FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm <u>for session keys</u> and specified cryptographic key sizes <u>112 (for DES) and 128,192, 256 (for AES)</u> that meet the following:

- For GP session keys: [GP v23] and [GPv23 Amd D]
- For ICAO session keys: [DOC9303]

FCS_CKM.1.1/RSA

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm for RSA (with or w/o CRT)¹ and specified cryptographic key sizes <u>1024-2048 bit²</u> that meet the following:

• According to section 3.2(1) in [PKCS v2.2]

¹ [assignment: cryptographic key generation algorithm

² [assignment: cryptographic key sizes]

Security Target

Security requirements

According to section 3.2(2) in [PKCS v2.2], for u=2, i.e. with 2 primes only¹

FCS_CKM.1.1/EC

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm <u>for EC²</u> and specified cryptographic key sizes 192, <u>224, 256, 384, 512, 521³</u> bit that meet the following:

- According to chapters 4.3.3 and 4.3.3.2 the appendix A4.3 in [X9.62].
- According to section 6.4.2 "Generation of signature key and verification key" in [ISO14888-3].
- According to appendix A.16.9 "An algorithm for generating EC keys" in [IEEE P1363]⁴

Note: The certification covers the following curves:

NIST standard curves from [FIPS 186-4]: P192, P224, P256, P384, P521 Brainpool curves from [RFC 5639]: BrainpoolP224r1, BrainpoolP256r1, BrainpoolP320r1, BrainpoolP384r1, BrainpoolP512r1, BrainpoolP224t1, BrainpoolP256t1, BrainpoolP320t1,BrainpoolP384t1, BrainpoolP512t1

7.2.1.14 FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method <u>clearKey method</u>⁵ that meets the following [JCAPI3]⁶.

7.2.1.15 FCS_COP.1 Cryptographic operation

FCS_COP.1.1/JCAPI

The TSF shall perform <u>cryptographic operations from Table 49</u>⁷ in accordance with a specified cryptographic algorithm <u>from Table 49</u>⁸ and cryptographic key sizes <u>from Table 49</u>⁹ that meet the following <u>standards from Table 49</u>¹⁰.

CC iteration	cryptographic operations	cryptographic algorithm	cryptographic key sizes	Standards
/TDES-ENC	TDES	ECB mode w/o padding and with	112, 168	[SP800-67]
	encryption and	ISO/IEC 9797-1 padding method 1 and 2		[SP800-38A]
	decryption			[ISO9797-1]

Table 49 JCAPI algorithms

¹ [assignment: list of standards]

² [assignment: cryptographic key generation algorithm]

³ [assignment: cryptographic key sizes]

⁴ [assignment: list of standards]

⁵ [assignment: cryptographic key destruction method]

⁶ [assignment: list of standards]

⁷ [assignment: list of cryptographic operations]

⁸ [assignment: cryptographic algorithm]

⁹ [assignment: cryptographic key sizes]

¹⁰ [assignment: list of standards]

Security Target

Security Tar Security req				
CC iteration	cryptographic operations	cryptographic algorithm	cryptographic key sizes	Standards
		CBC mode w/o padding and with ISO/IEC 9797-1 padding method 1 and 2	112, 168	[SP800-67] [SP800-38A] [ISO9797-1]
/AES-ENC	AES encryption and decryption	ECB mode w/o padding and with ISO/IEC 9797-1 padding method 1 and 2	128, 192, 256	[FIPS 197] [SP800-38A] [ISO9797-1]
		CBC mode w/o padding and with ISO/IEC 9797-1 padding method 1 and 2	128, 192, 256	[FIPS 197] [SP800-38A] [ISO9797-1]
/TDES-MAC	TDES MAC calculation and	ISO/IEC 9797-1 algorithm 3 and padding method 2 with 8 bytes MAC	112	[SP800-67] [ISO9797-1]
	verification	ISO/IEC 9797-1 algorithm 1 and padding method 1 and 2 with 8 bytes MAC	112, 168	[SP800-67] [ISO9797-1]
/AES-MAC	AES MAC calculation and	ISO/IEC 9797-1 algorithm 1 without padding	128, 192, 256	[FIPS 197] [ISO9797-1]
	verification	CMAC	128, 192, 256	[FIPS 197] [SP800-38B]
/HASH	hash calculation	SHA-1, SHA-224, SHA-256	None	
/RSA-DEC	RSA decryption	RSADP	1024-4096	[PKCS v2.2]
		RSAES-PKCS1-V1_5	1024-4096	[PKCS v1.5]
		RSAES-OAEP-DECRYPT	1024-4096	[PKCS v2.2]
/RSA-ENC	RSA encryption	RSAEP	1024-4096	[PKCS v2.2]
		RSAES-PKCS1-V1_5	1024-4096	[PKCS v1.5]
		RSAES-OAEP-ENCRYPT	1024-4096	[PKCS v2.2]
/RSA-SIG	RSA signature generation	RSASSA-PSS w/o hash and with hash in {SHA-1, SHA224, SHA256, SHA384, SHA512}}	1024-4096	[PKCS v2.2]
		RSASSA-PKCS-v1_5 w/o hash and with hash in {SHA-1, SHA224, SHA256, SHA384, SHA512}	1024-4096	[PKCS v2.2]
		ISO 9796-2, scheme 1 with SHA-1	1024-4096	[ISO9796-2]
/RSA-VER	RSA signature verification	RSASSA-PSS w/o hash and with hash in {SHA-1, SHA224, SHA256, SHA384, SHA512}	1024-4096	[PKCS v2.2]
		RSASSA-PKCS-v1_5 w/o hash and with hash in {SHA-1, SHA224, SHA256, SHA384, SHA512}	1024-4096	[PKCS v2.2]
		ISO 9796-2, scheme 1 with SHA-1	1024-4096	[ISO9796-2]
/ECDSA-SIG	EC signature generation	ECDSA sign w/o hash and with hash in {SHA-1, SHA224, SHA256, SHA384, SHA512}	see note	[SEC1]
/ECDSA-	EC signature	ECDSA verify w/o hash and with hash in	see note	[SEC1]

Security Target

Security requirements				
CC iteration	cryptographic operations	cryptographic algorithm	cryptographic key sizes	Standards
VER	verification	{SHA-1, SHA224, SHA256, SHA384, SHA512}		
/ECDH	EC Key	ECSVDP-DH	see note	[IEEE P1363]
	agreement	ALG_EC_SVDP_DH_PLAIN	see note	[JCAPI3]
		ALG_EC_SVDP_DH_PLAIN_XY	see note	[JCAPI3]
/PACE_GM	password authenticated key agreement	ALG_ECDH_GM_AES ALG_ECDH_GM_3DES ALG_ECDH_MS_MINI_DRIVER_GM_3DES ALG_ECDH_MS_MINI_DRIVER_GM_AES	see note	[APISPEC]
/PACE_CAM	password authenticated key agreement	ALG_ECDH_CAM_AES	see note	[APISPEC]
/HMAC	keyed-hash message authentication mode	HMAC_SHA_256	see note	[FIPS PUB 198-1]

- *Note:* Cofactor multiplication is not supported for ECDH. All certified curves in this ST have cofactor = 1 and therefore cofactor multiplication is not necessary.
- *Note: The certified curves and bit length for ECDSA-SIG, ECDSA-VER, ECDH and PACE are listed in FCS_CKM.1.1/EC in chapter 7.2.1.13.*
- Note: SHA 384 and SHA 512 are supported but have no security hardening and shall be used only for hashing of non security critical data.
- Note: RSA-DEC and RSA-SIG support keysizes from 2049-4096 bits with CRT calculation only.
 - Note: HMAC_SHA_384 and HMAC_SHA_512 are supported, however, does not have security hardening and shall be used only for non security critical data.

FCS_COP.1.1/SCP

The TSF shall perform <u>cryptographic operations from Table 50¹</u> in accordance with a specified cryptographic algorithm <u>from Table 50²</u> and cryptographic key sizes <u>from Table 50³</u> that meet the following <u>standards from Table 50⁴</u>.

Table 50GP cryptographic algorithms

	Cryptographic operations	Cryptographic algorithm	Cryptographic key sizes	Standards
--	--------------------------	----------------------------	----------------------------	-----------

¹ [assignment: cryptographic operations]

² [assignment: cryptographic algorithms]

³ [assignment: cryptographic key sizes]

⁴ [assignment: list of standards]

Security Target

Security requirements

/ENC-TDES	secure channel decryption	SCP02, option 15 and 55	112	[GP v23]
/ENC-AES	secure channel decryption	SCP03, option 10 and 00	128, 192, 256	[GPv23 Amd D]
/MAC-TDES	secure channel authentication	SCP02, option 15 and 55	112	[GP v23]
/MAC-AES	secure channel authentication	SCP03, option 10 and 00	128, 192, 256	[GPv23 Amd D]

Note: ENC-TDES and ENC-AES supports command decryption/unwrap only

FCS_COP.1.1/SM

The TSF shall perform <u>cryptographic operations from Table 51¹</u> in accordance with a specified cryptographic algorithm <u>from Table 51²</u> and cryptographic key sizes <u>from Table 51³</u> that meet the following <u>standards from Table 51⁴</u>

CC iteration	cryptographic operations	cryptographic algorithm	cryptographic key sizes	Standards
/ICAO-ENC-TDES	secure messaging encryption	TDES in CBC mode	112	[DOC9303]
/ICAO-MAC-TDES	secure messaging authentication	Retail MAC with TDES	112	[DOC9303]
/ICAO-ENC-AES	secure messaging encryption	AES in CBC mode	128,192,256	[DOC9303]
/ICAO-MAC-AES	secure messaging authentication	C-MAC with 8 bytes	128,192,256	[DOC9303]
/18013-ENC-AES	secure messaging encryption	AES in CBC mode	128,192,256	[ISO18013-3]
/18013-MAC-AES	secure messaging authentication	C-MAC with 8 bytes	128,192,256	[ISO18013-3]
/PACE_GM	password authenticated key agreement	PACE with generic mapping	see note	[DOC9303] chapter 4.1
/PACE_CAM	password authenticated key agreement	PACE with chip authentication mapping	See note	[DOC9303] chapter 4.1
/PACE_MS	password authenticated key agreement	see note	see note	See note

Table 51 ICAO cr	yptographic algorithms
------------------	------------------------

¹ [assignment: list of cryptographic operations]

² [assignment: cryptographic algorithm]

³ [assignment: cryptographic key sizes]

⁴ [assignment: list of standards]

Security Target

Security requirements

Note: The PACE implementation according to this SFR has special countermeasures against side channel leakage such that it can be used for low entropy secret passwords.

Note: PACE_MS is a variant of the PACE protocol. PACE_MS is PACE according to ICAO Doc 9303 (7th Editition, 2015), Part 11, section 4.4.1, but with decryption in step 1 (instead of encryption) and encryption in step 2 (instead of decryption).

7.2.1.16 FCS_RNG.1 Random number generation (Class PTG.2)

FCS_RNG.1.1/PTG.2

The TSF shall provide a <u>physical</u>¹ random number generator that implements:

PTG.2.1	A total failure test detects a total failure of entropy source immediately when the RNG
	has started. When a total failure is detected, no random numbers will be output.
PTG.2.2	If a total failure of the entropy source occurs while the RNG is being operated, the RNG
	prevents the output of any internal random number that depends on some raw random
	numbers that have been generated after the total failure of the entropy source. ²
PTG.2.3	The online test shall detect non-tolerable statistical defects of the raw random number
	sequence (i) immediately when the RNG has started, and (ii) while the RNG is being
	operated. The TSF must not output any random numbers before the power-up online
	test has finished successfully or when a defect has been detected.
PTG.2.4	The online test procedure shall be effective to detect non-tolerable weaknesses of the
	random numbers soon.
PTG.2.5	The online test procedure checks the quality of the raw random number sequence. It is
	triggered <u>continuously</u> ³ . The online test is suitable for detecting non-tolerable statistical
	defects of the statistical properties of the raw random numbers within an acceptable
	period of time.

FCS_RNG.1.2/PTG.2

The TSF shall provide <u>numbers in the format 32-bit⁴</u> that meet:

PTG.2.6	Test procedure A, <u>as defined in [AIS 31]⁵</u> does not distinguish the internal random numbers from output sequences of an ideal RNG.
PTG.2.7	The average Shannon entropy per internal random bit exceeds 0.997.6

7.2.1.17 FCS_RNG.1 Random number generation (Class PTG.3)

FCS_RNG.1.1/PTG.3

¹ [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]

² [selection: prevents the output of any internal random number that depends on some raw random numbers that have been generated after the total failure of the entropy source, generates the internal random numbers with a post-processing algorithm of class DRG.2 as long as its internal state entropy guarantees the claimed output entropy]

³ [selection: externally, at regular intervals, continuously, applied upon specified internal events]

⁴ [assignment: format of the numbers]

⁵ [assignment: additional standard test suites]

⁶ [assignment: a defined quality metric]

Security Target

Security requirements

The TSF shall provide a <u>hybrid physical¹</u> random number generator that implements:

PTG.3.1	A total failure test detects a total failure of entropy source immediately when the RNG
	has started. When a total failure has been detected no random numbers will be output.
PTG.3.2	If a total failure of the entropy source occurs while the RNG is being operated, the RNG
	prevents the output of any internal random number that depends on some raw random
	numbers that have been generated after the total failure of the entropy source ² .
PTG.3.3	The online test shall detect non-tolerable statistical defects of the raw random number
	sequence (i) immediately when the RNG is started, and (ii) while the RNG is being
	operated. The TSF must not output any random numbers before the power-up online
	test and the seeding of the DRG.3 postprocessing algorithm have been finished
	successfully or when a defect has been detected.
PTG.3.4	The online test procedure shall be effective to detect non-tolerable weaknesses of the
	random numbers soon.
PTG.3.5	The online test procedure checks the raw random number sequence. It is triggered
	<u>continuously</u> ³ . The online test is suitable for detecting nontolerable statistical defects of
	the statistical properties of the raw random numbers within an acceptable period of
	time.
PTG.3.6	The algorithmic post-processing algorithm belongs to Class DRG.3 with cryptographic
	state transition function and cryptographic output function, and the output data rate of
	the post-processing algorithm shall not exceed its input data rate.
	the post-processing algorithm shall not exceed its input data rate.

FCS_RNG.1.2/PTG.3

The TSF shall provide <u>octets of bits</u>⁴ that meet:

PTG.3.7	Statistical test suites cannot practically distinguish the internal random numbers from output sequences of an ideal RNG. The internal random numbers must pass test procedure A.
PTG.3.8	The internal random numbers shall <u>use PTRNG of class PTG.2 as random source for the</u> <u>post-processing.</u> ⁵

7.2.1.18 FCS_RNG.1 Random number generation (Class DRG.4)

FCS_RNG.1.1/DRG.4

The TSF shall provide a <u>hybrid deterministic⁶</u> random number generator that implements:

DRG.4.1	The internal state of the RNG shall <u>use PTRNG of class PTG.2 as random source⁷.</u>

¹ [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]

² [selection: prevents the output of any internal random number that depends on some raw random numbers that have been generated after the total failure of the entropy source, generates the internal random numbers with a post-processing algorithm of class DRG.3 as long as its internal state entropy guarantees the claimed output entropy]

³ [selection: externally, at regular intervals, continuously, upon specified internal events]

⁴ [selection: bits, octets of bits, numbers [assignment: format of the numbers]]

⁵ [selection: use PTRNG of class PTG.2 as random source for the post-processing, have [assignment: work factor], require [assignment: guess work]]

⁶ [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]

⁷ [selection: use PTRNG of class PTG.2 as random source, have [assignment: work factor], require [assignment: guess work]]

Security Target

Security requirements	
DRG.4.2	The RNG provides forward secrecy.
DRG.4.3	The RNG provides backward secrecy even if the current internal state is known.
DRG.4.4 The RNG provides enhanced forward secrecy <u>on demand¹</u> .	
DRG.4.5 The internal state of the RNG is seeded by an <u>PTRNG of class PTG.2²</u> .	

FCS_RNG.1.2/DRG.4

The TSF shall provide random numbers that meet:

DRG.4.6	The RNG generates output for which <u>any consecutive 2^{34} strings of bit length 128 are</u> mutually different with a probability that is greater than $1 - 2^{(-16)}$.
DRG.4.7	Statistical test suites cannot practically distinguish the random numbers from output sequences of an ideal RNG. The random numbers must pass test procedure A.

7.2.1.19 FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource</u> from the following objects: <u>any reference to an object instance created during an</u> <u>aborted transaction</u>.

7.2.1.20 FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>allocation of the resource to the following objects: the APDU buffer</u>.

7.2.1.21 FDP_RIP.1/GlobalArray Subset residual information protection

FDP_RIP.1.1/GlobalArray[Refined]

The TSF shall ensure that any previous information content of a resource is made unavailable upon <u>deallocation</u> <u>of the resource from</u> the applet as a result of returning from the process method to the following objects: <u>a user</u> <u>Global Array</u>.

7.2.1.22 FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource</u> from the following objects: <u>the bArray object</u>.

7.2.1.23 FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS

¹ [selection: on demand, on condition [assignment: condition], after [assignment: time]]

² [selection: internal entropy source, PTRNG of class PTG.2, PTRNG of class PTG.3, [other selection]]

³ [assignment: number of strings] strings of bit length 128 are mutually different with probability [assignment: probability]

Security Target

Security requirements

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource</u> from the following objects: <u>the cryptographic buffer (D.CRYPTO)</u>.

7.2.1.24 FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource</u> from the following objects: <u>any transient object</u>.

7.2.1.25 FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL

The TSF shall enforce <u>the FIREWALL access control SFP and the JCVM information flow control SFP</u> to permit the rollback of the <u>operations OP.JAVA and OP.CREATE</u> on the object <u>O.JAVAOBJECT</u>.

FDP_ROL.1.2/FIREWALL

The TSF shall permit operations to be rolled back within the <u>scope of a select()</u>, <u>deselect()</u>, <u>process()</u>, <u>install() or</u> <u>uninstall() call</u>, <u>notwithstanding the restrictions given in [JCRE3]</u> §7.7, within the bounds of the Commit Capacity ([JCRE3] §7.8), and those described in [JCRE3].

7.2.1.26 FAU_ARP.1 Security alarms

FAU_ARP.1.1

The TSF shall take one of the following actions:

- throw an exception,
- lock the card session,
- reinitialize the Java Card System and its data,
- <u>none¹</u>

upon detection of a potential security violation.

Refinement:

The "potential security violation" stands for one of the following events:

- CAP file inconsistency,
- typing error in the operands of a bytecode,
- applet life cycle inconsistency,
- card tearing (unexpected removal of the Card out of the CAD) and power failure,
- abort of a transaction in an unexpected context, (see abortTransaction() [JCAPI3] and [JCRE3] §7.6.2)
- violation of the Firewall or JCVM SFPs,
- unavailability of resources,
- array overflow,
- <u>list of other runtime errors</u>².

¹ [assignment: list of other actions]

² [assignment: list of other runtime errors]

Security Target

Security requirements

- <u>stack overflow</u>
- <u>illegal methods arguments</u>
- integrity check failure

7.2.1.27 FDP_SDI.2/DATA Stored data integrity monitoring and action

FDP_SDI.2.1/DATA

The TSF shall monitor user data stored in containers controlled by the TSF for <u>integrity errors¹</u> on all objects, based on the following attributes: <u>Checksum associated to keys and pins²</u>.

FDP_SDI.2.2/DATA

Upon detection of a data integrity error, the TSF shall perform a security reset³.

7.2.1.28 FPR_UNO.1 Unobservability

FPR_UNO.1.1

The TSF shall ensure that <u>all users and subjects</u>⁴ are unable to observe the operation <u>OP.JAVA(...)</u> for <u>cryptographic API methods</u>⁵ on <u>D.APP_KEYS</u>, <u>D.JCS_KEYS</u>, <u>D.PIN</u>, <u>D.CRYPTO</u>⁶ by any <u>subject</u>⁷.

7.2.1.29 FPT_FLS.1 Failure with preservation of secure state

FPT_FLS.1.1

The TSF shall preserve a secure state when the following types of failures occur: <u>those associated to the potential</u> <u>security violations described in FAU_ARP.1</u>.

7.2.1.30 FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1

The TSF shall provide the capability to consistently interpret <u>the CAP files, the bytecode and its data arguments</u> when shared between the TSF and another trusted IT product.

FPT_TDC.1.2

The TSF shall use

- the rules defined in [JCVM3] specification,
- the API tokens defined in the export files of reference implementation,
- <u>none</u>¹

¹ [assignment:integrity errors]

² [assignment: user data attributes]

³ [assignment: action to be taken]

⁴ [assignment: list of users and/or subjects]

⁵ [assignment: list of operations]

⁶ [assignment: list of objects]

⁷ [assignment: list of protected users and/or subjects]

Security Target

Security requirements

when interpreting the TSF data from another trusted IT product.

7.2.1.31 FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID

The TSF shall maintain the following list of security attributes belonging to individual users:

- CAP File AID,
- Package AID,
- <u>Applet's version number</u>,
- <u>Registered applet AID</u>,
- Applet Selection Status ([JCVM3] §6.5).

Note: Refinement: "Individual users" stand for applets.

7.2.1.32 FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID

The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

7.2.1.33 FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID

The TSF shall associate the following user security attributes with subjects acting on the behalf of that user: <u>CAP</u> <u>file AID</u>.

FIA_USB.1.2/AID

The TSF shall enforce the following rules on the initial association of user security attributes with subjects acting on the behalf of users: <u>The rules defined in [JCRE3]</u>, chapter 11².

FIA_USB.1.3/AID

The TSF shall enforce the following rules governing changes to the user security attributes associated with subjects acting on the behalf of users: <u>The rules defined in [JCRE3]</u>, chapter 11³.

7.2.1.34 FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE

The TSF shall restrict the ability to modify the list of registered applets' AIDs to the JCRE.

 $^{^{\}rm 1}$ [assignment: list of interpretation rules to be applied by the TSF]

² [assignment: rules for the initial association of attributes]

³ [assignment: rules for the changing of attributes]

Security Target
Security requirements

7.2.1.35 FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE

The TSF shall ensure that only secure values are accepted for the registered applets' AIDs.

7.2.2 InstG security functional requirements

This group consists of the SFRs related to the installation of the applets, which addresses security aspects outside the runtime. The installation of applets is a critical phase, which lies partially out of the boundaries of the firewall, and therefore requires specific treatment. In this ST, loading a CAP file or installing an applet is modeled as importation of user data (that is, user application's data) with its security attributes (such as the parameters of the applet used in the firewall rules).

7.2.2.1 FDP_ITC.2/Installer Import of user data with security attributes

FDP_ITC.2.1/Installer [Editorially Refined]

The TSF shall enforce the <u>Secure Channel Protocol information flow control policy</u> when importing user data, controlled under the SFP, from outside of the TOE.

Note: The original SFR defined in [JC PP] relates to the "CAP file LOADING information flow control SFP", which is defined in FDP_IFC.1/CM of [JC PP]. This Security Target has refined the SFR FDP_IFC.1/CM to by the SFR FDP_IFC.2/SC. The security policy in FDP_IFC.2/SC is called "Secure Channel Protocol information flow control policy" (see chapter 7.2.6.13).

FDP_ITC.2.2/Installer

The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3/Installer

The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4/Installer

The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5/Installer

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE:

<u>CAP file loading is allowed only if, for each dependent package, its AID attribute is equal to a resident package</u> <u>AID attribute, the major version attribute associated to the dependent package file is equal to the major version</u> <u>attribute of the resident package and the minor version attribute is equal to or less than the minor version</u> <u>attribute associated to the resident package ([JCVM3], §4.5.2).</u>

7.2.2.2 FMT_SMR.1/Installer Security roles

FMT_SMR.1.1/Installer

The TSF shall maintain the roles: Installer.

FMT_SMR.1.2/Installer Final

Security Target

Security requirements

The TSF shall be able to associate users with roles.

7.2.2.3 FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer

When automated recovery from <u>none¹</u> is not possible, the TSF shall enter a maintenance mode where the ability to return to a secure state is provided.

FPT_RCV.3.2/Installer

For <u>any failures/service discontinuities</u>², the TSF shall ensure the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3/Installer

The functions provided by the TSF to recover from failure or service discontinuity shall ensure that the secure initial state is restored without exceeding <u>null</u>³ for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/Installer

The TSF shall provide the capability to determine the objects that were or were not capable of being recovered.

7.2.2.4 FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer

The TSF shall preserve a secure state when the following types of failures occur: <u>the installer fails to load/install a</u> <u>package/applet as described in[JCRE3] §11.1.5</u>.

7.2.3 AdelG security functional requirements

This group consists of the SFRs related to the deletion of applets and/or packages, enforcing the applet deletion manager (ADEL) policy on security aspects outside the runtime. Deletion is a critical operation and therefore requires specific treatment. This policy is better thought as a frame to be filled by ST implementers.

7.2.3.1 FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL

The TSF shall enforce the <u>ADEL access control SFP</u> on <u>S.ADEL, S.JCRE, S.JCVM, O.JAVAOBJECT, O.APPLET and</u> <u>O.CODE_CAP_FILE</u> and all operations among subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

- OP.DELETE_APPLET,
- OP.DELETE_CAP_FILE,
- OP.DELETE_CAP_FILE_APPLET.

FDP_ACC.2.2/ADEL

¹ [assignment: list of failures/service discontinuities]

² [assignment: list of failures/service discontinuities]

³ [assignment: quantification]

Security Target

Security requirements

The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

7.2.3.2 FDP_ACF.1/ADEL Security attribute based access control

FDP_ACF.1.1/ADEL

The TSF shall enforce the <u>ADEL access control SFP</u> to objects based on the following:

Subject/Object	Subject/Object
S.JCVM	Active Applets
S.JCRE	Selected Applet Context, Registered Applets, Resident CAP files
O.CODE_CAP_FILE	CAP file AID, AIDs of packages within a CAP file, Dependent Package AID, Static References
O.APPLET	Applet Selection Status

Table 52 FDP_ACF.1.1/ADEL

FDP_ACF.1.2/ADEL

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

In the context of this policy, an object O is reachable if and only one of the following conditions hold:

- (1) the owner of O is a registered applet instance A (O is reachable from A),
- (2) a static field of a resident package P contains a reference to O (O is reachable from P),
- (3) there exists a valid remote reference to O (O is remote reachable),
- (4) there exists an object O' that is reachable according to either (1) or (2) or (3) above and O' contains a reference to O (the reachability status of O is that of O').

The following access control rules determine when an operation among controlled subjects and objects is allowed by the policy:

- <u>R.JAVA.14 ([JCRE3] §11.3.4.1, Applet Instance Deletion): S.ADEL may perform OP.DELETE_APPLET upon an</u> <u>O.APPLET only if.</u>
 - (1) S.ADEL is currently selected,
 - (2) there is no instance in the context of O.APPLET that is active in any logical channel and
 - <u>(3) there is no O.JAVAOBJECT owned by O.APPLET such that either O.JAVAOBJECT is reachable from an applet instance distinct from O.APPLET, or O.JAVAOBJECT is reachable from a package P, or ([JCAPI3] §8.5)</u>
 <u>O.JAVAOBJECT is remote reachable.</u>
- <u>R.JAVA.15 ([JCRE3] §11.3.4.1, Multiple Applet Instance Deletion): S.ADEL may perform OP.DELETE_APPLET</u> upon several O.APPLET only if,
 - (1) S.ADEL is currently selected,
 - (2) there is no instance of any of the O.APPLET being deleted that is active in any logical channel and
 - (3) there is no O.JAVAOBJECT owned by any of the O.APPLET being deleted such that either O.JAVAOBJECT is reachable from an applet instance distinct from any of those O.APPLET, or O.JAVAOBJECT is reachable from a package P, or ([JCRE3] §8.5) O.JAVAOBJECT is remote reachable.
- <u>R.JAVA.16 ([JCRE3] §11.3.4.2, Applet/Library CAP file Deletion): S.ADEL may perform OP.DELETE_CAP_FILE</u> upon an O.CODE_CAP_FILE only if,

Security Target

Security requirements

- (1) S.ADEL is currently selected,
- (2) no reachable O.JAVAOBJECT, from a CAP file distinct from O.CODE CAP FILE that is an instance of a class that belongs to O.CODE CAP FILE, exists on the card and
- (3) there is no resident package on the card that depends on O.CODE_CAP_FILE.
- <u>R.JAVA.17 ([JCRE3] §11.3.4.3, Applet CAP file and Contained Instances Deletion): S.ADEL may perform</u> <u>OP.DELETE CAP FILE APPLET upon an O.CODE CAP FILE only if,</u>
 - (1) S.ADEL is currently selected,
 - (2) no reachable O.JAVAOBJECT, from a CAP file distinct from O.CODE CAP FILE, which is an instance of a class that belongs to O.CODE CAP FILE exists on the card,
 - (3) there is no CAP file loaded on the card that depends on O.CODE_CAP_FILE, and
 - (4) for every O.APPLET of those being deleted it holds that: (i) there is no instance in the context of
 O.APPLET that is active in any logical channel and (ii) there is no O.JAVAOBJECT owned by O.APPLET such
 that either O.JAVAOBJECT is reachable from an applet instance not being deleted, or O.JAVAOBJECT is
 reachable from a CAP file not being deleted, or ([JCRE3] §8.5) O.JAVAOBJECT is remote reachable.

FDP_ACF.1.4/ADEL [Editorially Refined]

The TSF shall explicitly deny access of subjects to objects based on the following additional rules: any subject but S.ADEL to O.CODE PKG or O.APPLET for the purpose of deleting them from the card.

7.2.3.3 FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource from</u> the following objects: <u>applet instances and/or CAP files when one of the</u> <u>deletion operations in FDP_ACC.2.1/ADEL is performed on them</u>.

7.2.3.4 FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL

The TSF shall enforce the <u>ADEL access control SFP</u> to restrict the ability to <u>modify</u> the security attributes <u>Registered Applets and Resident CAP files</u> to <u>the Java Card RE</u>.

7.2.3.5 FMT_MSA.3/ADEL Static attribute initialisation

FMT_MSA.3.1/ADEL

The TSF shall enforce the <u>ADEL access control SFP</u> to provide <u>restrictive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL

The TSF shall allow the <u>following role(s): none</u>, to specify alternative initial values to override the default values when an object or information is created.

7.2.3.6 FMT_SMF.1/ADEL Specification of Management Functions

FMT_SMF.1.1/ADEL

The TSF shall be capable of performing the following management functions: <u>modify the list of registered</u> <u>applets' AIDs and the Resident CAP files.</u>

Security Target
Security requirements

7.2.3.7 FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL

The TSF shall maintain the roles: applet deletion manager.

FMT_SMR.1.2/ADEL

The TSF shall be able to associate users with roles.

7.2.3.8 FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL

The TSF shall preserve a secure state when the following types of failures occur: <u>the applet deletion manager</u> fails to delete a CAP file/applet as described in [JCRE3]§11.3.4.

7.2.4 OdelG security functional requirements

The following requirements concern the object deletion mechanism. This mechanism is triggered by the applet that owns the deleted objects by invoking a specific API method.

7.2.4.1 FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL

The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource from</u> the following objects: <u>the objects owned by the context of an applet instance</u> <u>which triggered the execution of the method javacard.framework.JCSystem.requestObjectDeletion()</u>.

7.2.4.2 FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL

The TSF shall preserve a secure state when the following types of failures occur: <u>the object deletion functions fail</u> <u>to delete all the unreferenced objects owned by the applet that requested the execution of the method</u>.

7.2.5 CarG security functional requirements

This group includes requirements for preventing the installation of CAP files that has not been bytecode verified, or that has been modified after bytecode verification.

All SFRs of this group have been refined or remapped in group CMGRG, which specializes the SFRs from CarG to more specific SFRs of GlobalPlatform functionality.

SFR from CargG	Corresponding SFR in CMGRG	Refinement/Re mapping
FCO_NRO.2/CM Enforced proof of origin	FCO_NRO.2/SC Enforced proof of origin	Refinement
FDP_IFC.2/CM Complete information flow control	FDP_IFC.2/SC Complete information flow control	Refinement
FDP_UIT.1/CM Data exchange integrity	FDP_UIT.1/CCM Data exchange integrity	Remapping

Table 53 Refinement/Remapping of CarG SFRs

Security Target

SFR from CargG	Corresponding SFR in CMGRG	Refinement/Re mapping
FIA_UID.1/CM Timing of identification	FIA_UID.1/SC Timing of identification	Refinement
FMT_MSA.1/CM Management of security attributes	FMT_MSA.1/SC Management of security attributes	Remapping
FMT_MSA.3/CM Static attribute initialisation	FMT_MSA.3/SC Static attribute initialisation	Remapping
FMT_SMF.1/CM Specification of Management functions	FMT_SMF.1/SC Specification of Management Functions	Remapping
FMT_SMR.1/CM Security roles	FMT_SMR.1/SD Security roles	Remapping
FTP_ITC.1/CM Inter-TSF trusted channel	FTP_ITC.1/SC Inter-TSF trusted channel	Remapping

7.2.6 Card manager (CMGRG)

7.2.6.1 FDP_UIT.1/CCM Data exchange integrity

FDP_UIT.1.1/CCM

The TSF shall enforce the <u>Secure Channel Protocol information flow control policy</u>¹ to <u>receive</u>² user data in a manner protected from <u>modification</u>, <u>deletion</u>, <u>insertion and replay</u>³ errors.

FDP_UIT.1.2/CCM

The TSF shall be able to determine on receipt of user data, whether <u>modification</u>, <u>deletion</u>, <u>insertion</u>, <u>replay</u>⁴ has occurred.

7.2.6.2 FDP_ROL.1/CCM Basic rollback

FDP_ROL.1.1/CCM

The TSF shall enforce <u>Security Domain access control policy</u>⁵ to permit the rollback of the <u>installation operation</u>⁶ on the <u>executable files and application instances</u>⁷.

FDP_ROL.1.2/CCM

The TSF shall permit operations to be rolled back within the <u>bounds of the commit capacity</u> (see [JCRE3] ch.7.8)⁸.

 $^{^{\}rm 1}$ [assignment: access control SFP(s) and/or information flow control SFP(s)]

² [selection: transmit, receive]

³ [selection: modification, deletion, insertion, replay]

⁴ [selection: modification, deletion, insertion, replay]

⁵ [assignment: access control SFP(s) and/or information flow control SFP(s)]

⁶ [assignment: list of operations]

⁷ [assignment: information and/or list of objects]

⁸ [assignment: boundary limit to which rollback may be performed]

Security Target
Security requirements

7.2.6.3 FDP_ITC.2/CCM Import of user data with security attributes

FDP_ITC.2.1/CCM

The TSF shall enforce the <u>Firewall access control policy</u>, the <u>Security Domain access control policy</u> and the <u>Secure Channel Protocol information flow policy</u>¹ when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2/CCM

The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3/CCM

The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4/CCM

The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5/CCM

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: <u>CAP file loading is allowed only if, for each dependent package, its AID attribute is equal to a resident package AID attribute, the major version attribute associated to the dependent package file is equal to the major version attribute of the resident package and the minor version attribute is equal to or less than the minor version attribute associated to the resident package ([JCVM3] §4.5.2)².</u>

7.2.6.4 FPT_FLS.1/CCM Failure with preservation of secure state

FPT_FLS.1.1/CCM

The TSF shall preserve a secure state when the following types of failures occur: <u>the Security Domain fails to</u> <u>load/install an Executable File / application instance as described in [JCRE3] Section 11.1.5³</u>.

7.2.6.5 FDP_ACC.1/SD Subset access control

FDP_ACC.1.1/SD

The TSF shall enforce the <u>Security Domain access control policy</u>⁴ on:

- Subjects: S.INSTALLER, S.ADEL, S.CAD (from [JC PP]) and S.SD
- Objects: Load File
- Operations: GlobalPlatform's card content management APDU commands and API methods.
- proprietary administration commands listed in [ADMIN]⁵

 $^{^{\}rm 1}$ [assignment: access control SFP(s) and/or information flow control SFP(s)]

² [assignment: additional importation control rules]

³ [assignment: list of types of failures in the TSF]

⁴ [assignment: access control SFP]

⁵ [assignment: list of subjects, objects, and operations among subjects and objects covered by the SFP]

Security Target
Security requirements

7.2.6.6 FDP_ACF.1/SD Security attribute based access control

FDP_ACF.1.1/SD

The TSF shall enforce the <u>Security Domain access control policy</u>¹ to objects based on the following:

- <u>Subjects:</u>
 - S.INSTALLER, defined in [JC PP] and represented by the GlobalPlatform Environment (OPEN) on the card, the Card Life Cycle attributes (defined in Section 5.1.1 of [GP v23]);
 - S.ADEL, also defined in [JC PP] and represented by the GlobalPlatform Environment (OPEN) on the card;
 - S.SD receiving the Card Content Management commands (through APDUs or APIs) with a set of privileges (defined in Section 6.6.1 of [GP v23]), a life-cycle status (defined in Section 5.3.2 of [GP v23]) and a Secure Communication Security level (defined in Section 10.6 of [GP v23]);
 - S.CAD, defined in [JC PP], the off-card entity that communicates with the S.INSTALLER through S.SD;
- <u>Objects:</u>
 - <u>The Load File or Executable File, in case of application loading, installation, registry update, with a set of intended privileges and its targeted associated SD AID.²</u>

FDP_ACF.1.2/SD

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:³

Runtime behavior rules defined by GlobalPlatform for:

- loading (Section 9.3.5 of [GP v23])
- installation (Section 9.3.6 of [GP v23])
- registry update (Section 9.4.2 of [GP v23] and Section 2.10.2.6 of [ADMIN])
- content removal (Section 9.5 of [GP v23])

FDP_ACF.1.3/SD

The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: <u>Proprietary runtime behavior rules defined by [ADMIN] for</u>⁴:

- reinitialize OS (Section 2.10.3.1 of [ADMIN])
- config OS (Section 2.10.3.4 of [ADMIN])
- set transport key (Section 2.10.3.7 of [ADMIN])

¹ [assignment: access control SFP]

² [assignment: list of subjects and objects controlled under the indicated SFP, and for each, the SFP-relevant security attributes, or named groups of SFP-relevant security attributes]

³ [assignment: rules governing access among controlled subjects and controlled objects using controlled operations on controlled objects].

⁴ [assignment: rules, based on security attributes, that explicitly authorise access of subjects to objects]

Security Target

Security requirements

Note: (Proprietary registry update): The product supports a mode called Static Mode in which INSTALL [for LOAD] and LOAD command processing is blocked. Static Mode can be enabled using INSTALL [for registry update] command. Refer to [ADMIN] for more details.

Note: Native mode (section 2.9 of [ADMIN]) can be activated by a Config OS command.

FDP_ACF.1.4/SD

The TSF shall explicitly deny access of subjects to objects based on the following additional rules: when at least one of the rules defined by GlobalPlatform does not hold¹.

7.2.6.7 FMT_MSA.1/SD Management of security attributes

FMT_MSA.1.1/SD

The TSF shall enforce the <u>Security Domain access control policy</u>² to restrict the ability to <u>modify</u>³ the security attributes

- life-cycle status
- <u>card life cycle</u>
- privileges
- <u>security level</u>⁴

to the Security Domain and the application instance itself⁵.

7.2.6.8 FMT_MSA.3/SD Static attribute initialisation

FMT_MSA.3.1/SD

The TSF shall enforce the <u>security domain access control policy</u>⁶ to provide <u>restrictive</u>⁷ default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/SD

The TSF shall allow the <u>card issuer</u>⁸ to specify alternative initial values to override the default values when an object or information is created.

Refinement: Alternative initial values shall be at least as restrictive as the default values defined in FMT_MSA.3.1.

¹ [assignment: rules, based on security attributes, that explicitly deny access of subjects to objects].

² [assignment: access control SFP(s), information flow control SFP(s)]

³ [selection: change_default, query, modify, delete, [assignment: other operations]]

⁴ [assignment: list of security attributes]

⁵ [assignment: the authorised identified roles]

⁶ [assignment: access control SFP, information flow control SFP]

⁷ [selection, choose one of: restrictive, permissive, [assignment: other property]]

⁸ [assignment: the authorised identified roles]

Security Target

Security requirements

7.2.6.9 FMT_SMF.1/SD Specification of Management Functions

FMT_SMF.1.1/SD

The TSF shall be capable of performing the following management functions:

- card locking (Section 9.6.3 of [GP v23])
- application locking and unlocking (Section 9.6.2 of [GP v23])
- card termination (Section 9.6.4 of [GP v23])
- card status interrogation (Section 9.6.6 of [GP v23])
- application status interrogation (Section 9.6.5 of [GP v23]).

7.2.6.10 FMT_SMR.1/SD Security roles

FMT_SMR.1.1/SD

The TSF shall maintain the roles.

- Card Issuer (ISD Authenticated)
- <u>Application Instance</u>¹

FMT_SMR.1.2/SD

The TSF shall be able to associate users with roles.

7.2.6.11 FTP_ITC.1/SC Inter-TSF trusted channel

FTP_ITC.1.1/SC

The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure.

FTP_ITC.1.2/SC

The TSF shall permit <u>another trusted IT product²</u> to initiate communication via the trusted channel.

FTP_ITC.1.3/SC

The TSF shall initiate communication via the trusted channel for <u>all card management functions</u>³:

- loading;
- installation;
- <u>registry update;</u>
- <u>SD personalization;</u>

¹ [assignment: the authorised identified roles]

² [selection: the TSF, another trusted IT product]

³ [assignment: list of functions for which a trusted channel is required].

Security Target
Security requirements

<u>SD update.</u>

7.2.6.12 FCO_NRO.2/SC Enforced proof of origin

FCO_NRO.2.1/SC

The TSF shall enforce the generation of evidence of origin for transmitted <u>Executable load files</u>¹ at all times.

FCO_NRO.2.2/SC

The TSF shall be able to relate the <u>Load File Data Block Hash</u>² of the originator of the information, and the <u>executable load file content</u>³ of the information to which the evidence applies.

FCO_NRO.2.3/SC

The TSF shall provide a capability to verify the evidence of origin of information to recipient⁴ <u>at the time the</u> <u>Executable load files are received as no evidence is kept on the card for future verification</u>⁵.

Note: Load File Data Blocks with atleast MAC protection in GP secure channel provides evidence for the originator of the executable load file blocks. But MAC protection is mandatory only from SECURED card state.

7.2.6.13 FDP_IFC.2/SC Complete information flow control

FDP_IFC.2.1/SC

The TSF shall enforce the Secure Channel Protocol information flow control policy⁶ on

- <u>the subjects S.CAD and S.SD, involved in the exchange of messages between the Java Card and the CAD</u> <u>through a potentially unsafe communication channel</u>
- the information controlled by this policy is the card content management command, including
 personalization commands, in the APDUs sent to the card and their associated responses returned to the
 <u>CAD.7</u>

and all operations that cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2/SC

The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.

Note: This SFR is interpreted as a refinement of the SFR FDP_IFC.2/CM from [JC PP]. The subject S.INSTALLER is generalized to S.SD, which is the agent for any management command. The subject S.BCV from SFR FDP_IFC.2/CM has been removed because the byte code verifier belongs to the operational environment and is therefor not a valid subject.

¹ [assignment: list of information types]

² [assignment: list of attributes]

³ [assignment: list of information fields]

⁴ [selection: originator, recipient, [assignment: list of third parties]]

⁵ [assignment: limitations on the evidence of origin].

⁶ [assignment: information flow control SFP]

⁷ [assignment: list of subjects and information]

7.2.6.14 FDP_IFF.1/SC Simple security attributes

FDP_IFF.1.1/SC

The TSF shall enforce the <u>Secure Channel Protocol information flow control policy</u>¹ based on the following types of subject and information security attributes:

- <u>Subjects:</u>
 - <u>S.SD receiving the Card Content Management commands (through APDUs or APIs). This subject can be the ISD, an APSD or a CASD.</u>
 - <u>S.CAD the off-card entity that communicates with the S.SD.</u>
- Information:
 - load file, in case of application loading;
 - applications or SD privileges, in case of application installation or registry update:
 - personalization keys and/or certificates, in case of application or SD personnalization.

FDP_IFF.1.2/SC

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold:

Runtime behavior rules defined by GlobalPlatform for:

- loading (Section 9.3.5 of [GP v23]);
- installation (Section 9.3.6 of [GP v23]);
- registry update (Section 9.4.2 of [GP v23]);
- content removal (Section 9.5 of [GP v23]).²

FDP_IFF.1.3/SC

The TSF shall enforce the <u>none³</u>.

FDP_IFF.1.4/SC

The TSF shall explicitly authorise an information flow based on the following rules: <u>none</u>⁴.

FDP_IFF.1.5/SC

The TSF shall explicitly deny an information flow based on the following rules: <u>When none of the conditions listed</u> in the element FDP_IFF.1.4 of this component hold and at least one of those listed in the element FDP_IFF.1.2 <u>does not hold</u>⁵

¹ [assignment: information flow control SFP]

² [assignment: for each operation, the security attribute-based relationship that must hold between subject and information security attributes]

³ [assignment: additional information flow control SFP rules]

⁴ [assignment: rules, based on security attributes, that explicitly authorise information flows]

⁵ [assignment: rules, based on security attributes, that explicitly deny information flows]

Security Target
Security requirements

7.2.6.15 FMT_MSA.1/SC Management of security attributes

FMT_MSA.1.1/SC

The TSF shall enforce the <u>Secure Channel Protocol (SCP) information flow control policy¹</u> to restrict the ability to <u>modify²</u> the security attributes <u>SCP keys³</u> to <u>card issuer</u>⁴.

7.2.6.16 FMT_MSA.3/SC Static attribute initialisation

FMT_MSA.3.1/SC

The TSF shall enforce the <u>Secure Channel Protocol (SCP) information flow control policy</u>⁵ to provide <u>restrictive</u>⁶ default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/SC

The TSF shall allow the <u>(Card) Issuer</u>⁷ to specify alternative initial values to override the default values when an object or information is created.

7.2.6.17 FMT_SMF.1/SC Specification of Management Functions

FMT_SMF.1.1/SC

The TSF shall be capable of performing the following management functions:

- Management functions specified in GlobalPlatform specifications [GP v23]:
- loading (Section 9.3.5 of [GP v23]);
- installation (Section 9.3.6 of [GP v23]);
- registry update (Section 9.4.2 of [GP v23]);⁸

7.2.6.18 FIA_UID.1/SC Timing of identification

FIA_UID.1.1/SC

The TSF shall allow

- application selection;
- <u>initializing a secure channel with the card;</u>
- open a supplementary logical channel

 $^{^{\}rm 1}$ [assignment: access control SFP(s), information flow control SFP(s)]

² [selection: change_default, query, modify, delete, [assignment: other operations]]

³ [assignment: list of security attributes]

⁴ [assignment: the authorised identified roles]

⁵ [assignment: access control SFP, information flow control SFP]

⁶ [selection, choose one of: restrictive, permissive, [assignment: other property]]

⁷ [assignment: the authorised identified roles]

⁸ [assignment: list of management functions to be provided by the TSF]

Security Target

Security requirements

verify password¹

on behalf of the user to be performed before the user is identified.

Note: "Verify password" is a proprietary Password authentication described in [ADMIN].

FIA_UID.1.2/SC

The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

7.2.6.19 FIA_UAU.1/SC Timing of authentication

FIA_UAU.1.1/SC

The TSF shall allow the TSF mediated actions listed in FIA_UID.1/SC² on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2/SC

The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

7.2.6.20 FIA_UAU.4/SC Single-use authentication mechanisms

FIA_UAU.4.1/SC

The TSF shall prevent reuse of authentication data related to <u>the authentication mechanism used to open a</u> <u>secure communication channel with the card</u>³.

7.2.7 SCPG security functional requirements

The group SCPG contains the security requirements from the underlying platform. The following SFRs are taken from [ST_IC]. Their exact definition will not be repeated here. For details, please see [ST_IC].

7.2.7.1 FPT_PHP.3 Resistance to physical attacks

FPT_PHP.3.1

The TSF shall resist <u>physical manipulation and probing</u>⁴ to the <u>all TSFs</u>⁵ by responding automatically such that the SFRs are always enforced.

¹ [assignment: list of TSF-mediated actions]

² [assignment: list of TSF mediated actions]

³ [assignment: identified authentication mechanism(s)].

⁴ [assignment: physical tampering scenarios]

⁵ [assignment: list of TSF devices/elements]

Security Target
Security requirements

7.2.7.2 FPT_TST.1 TSF testing

FPT_TST.1.1

The TSF shall run a suite of self tests <u>during initial start-up¹</u> to demonstrate the correct operation of the <u>TSF²</u>.

FPT_TST.1.2

The TSF shall provide authorised users with the capability to verify the integrity of the <u>TSF data</u>³.

FPT_TST.1.3

The TSF shall provide authorised users with the capability to verify the integrity of <u>TSF</u>⁴.

Note: "During Initial startup" means during each power up.

Note: The automatic startup tests demonstrate the correct operation of the alarm lines and/or the environmental sensor mechanisms.

7.2.8 SandBoxG security functional requirements

This group contains the security requirements to separate the native executable code in the SandBox environment from the other parts of the TOE.

7.2.8.1 FDP_ACC.2 SandBox Complete access control

FDP_ACC.2.1/SandBox

The TSF shall enforce the <u>SandBox access control SFP</u> on <u>S.SandBoxNativeCode</u>, <u>O.SandBox</u> <u>Content</u>, <u>O.Non</u> <u>SandBox</u> <u>Content</u>, <u>O.SandBox</u> <u>SFR</u>, <u>O.Non</u> <u>SandBox</u> <u>SFR</u> and all operations among subjects and objects covered by the SFP</u>.

FDP_ACC.2.2/SandBox

The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

Refinement: The operations involved in this policy are:

- OP.SandBox_ACCESS,
- OP.SandBox_ACCESS_SFR.

7.2.8.2 FDP_ACF.1 SandBox Security attribute based access control

FDP_ACF.1.1/SandBox

The TSF shall enforce the <u>SandBox access control SFP</u> to all objects based on the following: <u>S.SandBoxNativeCode, O.SandBox Content, O.Non SandBox Content, O.SandBox SFR, O.Non SandBox SFR</u>

¹ [selection: during initial start-up, periodically during normal operation, at the request of the authorised user, at the conditions[assignment: conditions under which self test should occur]]

² [selection: [assignment: parts of TSF], the TSF]

³ [selection: [assignment: parts of TSF data], TSF data]

⁴ [selection: [assignment: parts of TSF], TSF]

Security Target

Security requirements

and the attributes CPU execution mode, the MPU Configuration Table and the Special Function Registers related to system management.

FDP_ACF.1.2/SandBox

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- <u>Code assigned to S.SandBoxNativeCode is only executed in CPU unprivileged mode.</u>
- <u>Code assigned to S.SanBoxNativeCode is only able to perform OP.SandBox_ACCESS to O.SandBox_Content.</u> <u>The NVM, and RAM which belongs to O.SandBox_Content is controlled by the MPU Configuration Table used</u> <u>by the Memory Protection Unit.</u>
- <u>Code assigned to S.SandBoxNativeCode is able to perform OP.SandBox_ACCESS_SFR to O.SandBox_SFR.</u>

FDP_ACF.1.3/SandBox

The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: <u>none</u>.

FDP_ACF.1.4/SandBox

The TSF shall explicitly deny access of subjects to objects based on the following additional rules:

- For S.SandBoxNative Code it is not possible to perform OP.SandBox_ACCESS to O.Non_SandBox_Content.
- For S.SandBoxNative Code it is not possible to perform OP.SandBox ACCESS SFR to O.Non SandBox SFR.

7.2.8.3 FMT_MSA.1 SandBox Management of security attributes

FMT_MSA.1.1/SandBox

The TSF shall enforce the <u>SandBox access control SFP</u> to restrict the ability to <u>modify</u> the security attributes <u>CPU</u> <u>execution mode and the MPU Configuration Table</u> to <u>S.JCRE</u>.

7.2.8.4 FMT_MSA.3 SandBox Static attribute initialization

FMT_MSA.3.1/SandBox

The TSF shall enforce the <u>SandBox access control SFP</u> to provide <u>restrictive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/SandBox

The TSF shall allow the <u>S.JCRE</u> to specify alternative initial values to override the default values when an object or information is created.

7.2.8.5 FMT_SMF.1 SandBox Specification of Management Functions

FMT_SMF.1.1/SandBox

The TSF shall be capable of performing the following management functions:

- Switch the CPU execution mode
- <u>Change the values in the MPU Configuration Table to assign RAM to the SandBox</u>
- Change the values in the MPU Configuration Table to assign NVM to the SandBox

Security Target
Security requirements

7.3 Security requirements rationale

7.3.1 Security functional requirements rationale

The following table provides a mapping form Objectives to SFRs. This mapping is an adapted version form the mapping provided in [JC PP].

The underlined SFRs are new in this ST. They are either refinements/remappings form the group CARG (see chapter 7.2.5) or additional SFRs defined in CMGRG (chapter 7.2.6) and SCPG (chapter 7.2.7).

The underlined Objectives are new in this ST. They have been introduced due to the new groups CMGRG (chapter 7.2.6) and SCPG (chapter 7.2.7).

Security Objective	SFRs	
O.SID	As in [JC PP] with remapping/refinement according to ch. 7.2.5. Please note that FMT_MSA.1/REM_REFS and FMT_MSA.1/EXPORT have been wrongly included in [JC PP] and must be removed.	
O.FIREWALL	As in [JC PP] with remapping/refinement according to ch. 7.2.5.	
O.GLOBAL_ARRAYS_CONFID	As in [JC PP]	
O.GLOBAL_ARRAYS_INTEG	As in [JC PP]	
O.ARRAY_VIEWS_CONFID	As in [JC PP]	
O.ARRAY_VIEWS_INTEG	As in [JC PP]	
O.NATIVE	As in [JC PP]	
O.OPERATE	As in [JC PP]	
O.REALLOCATION	As in [JC PP]	
O.RESOURCES	As in [JC PP] with remapping/refinement according to ch. 7.2.5.	
O.ALARM	As in [JC PP]	
O.CIPHER	As in [JC PP]	
O.KEY-MNGT	As in [JC PP]	
O.PIN-MNGT	As in [JC PP]	
O.TRANSACTION	As in [JC PP]	
O.OBJ-DELETION	As in [JC PP]	
O.DELETION	As in [JC PP]	
O.LOAD	As in [JC PP] with remapping/refinement according to ch. 7.2.5.	
O.INSTALL	As in [JC PP]	
O.COMMUNICATION	<u>FMT_SMR.1/SD</u> , FMT_MSA.1/SC, <u>FMT_MSA.3/SC</u> , <u>FIA_UID.1/SC</u> , <u>FTP_ITC.1/SC</u> , <u>FDP_IFC.2/SC</u> , <u>FDP_IFF.1/SC</u> , <u>FIA_UAU.1/SC</u> , <u>FMT_SMF.1/SC</u>	
<u>O.RNG</u>	As in [JC PP]	
O.CARD-MANAGEMENT	FDP_ACC.1/SD, FMT_MSA.1/SD, FMT_MSA.3/SD, FMT_SMF.1/SD,FMT_SMR.1/SD, FDP_UIT.1/CCM, FDP_ROL.1/CCM, FDP_ITC.2/CCM,FMT_MSA.1/SC, FMT_MSA.3/SC, FMT_SMF.1/SC, FIA_UAU.1/SC, FTP_ITC.1/SC,FCO_NRO.2/SC, FDP_IFC.2/SC, FDP_IFF.1/SC, FIA_UID.1/SC, FIA_UAU.4/SC,FDP_ACF.1/SD, FPT_FLS.1/CCM	
O.SCP.SUPPORT	FCS_COP.1, FDP_ROL.1/FIREWALL	

Table 54 Mapping Security Objectives to SFRs

Security Target

Security requirements	
Security Objective	SFRs
<u>O.SCP.IC</u>	FPT_PHP.3, FPT_TST.1
O.SCP.RECOVERY	FPT_FLS.1, FAU_ARP.1
O.SAND BOX	FDP ACC.2.1/SandBox, FDP ACC.2.1/SandBox, FDP ACF.1.1/SandBox, FDP ACF.1.2/SandBox, FDP ACF.1.3/SandBox, FDP ACF.1.4/SandBox, FMT MSA.1.1/SandBox, FMT MSA.3.1/SandBox, FMT MSA.3.2/SandBox, FMT SMF.1.1/SandBox
O.SCP.RNG	FCS_RNG.1

7.3.1.1 O.SID

The rationale for the SFR mapping is stated in [JC PP]. The underlined SFRs are refinements of the corresponding SFRs from the CARG group (see chapter 7.2.5).

7.3.1.2 O.FIREWALL

The rationale for the SFR mapping is stated in [JC PP]. The underlined SFRs are refinements of the corresponding SFRs from the CARG group (see chapter 7.2.5).

7.3.1.3 O.GLOBAL_ARRAYS_CONFID

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.4 O.GLOBAL_ARRAYS_INTEG

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.5 O.ARRAY_VIEWS_CONFID

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.6 O.ARRAY_VIEWS_INTEG

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.7 O.NATIVE

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.8 **O.OPERATE**

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.9 O.REALLOCATION

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.10 O.RESOURCES

The rationale for the SFR mapping is stated in [JC PP]. The underlined SFRs are refinements of the corresponding SFRs from the CARG group (see chapter 7.2.5).

Final

infineon

Security Target
Security requirements

7.3.1.11 O.ALARM

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.12 O.CIPHER

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.13 O.RNG

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.14 O.KEY-MNGT

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.15 **O.PIN-MNGT**

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.16 O.TRANSACTION

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.17 O.OBJ-DELETION

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.18 O.DELETION

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.19 O.LOAD

The rationale for the SFR mapping is stated in [JC PP]. The underlined SFRs are refinements of the corresponding SFRs from the CARG group (see chapter 7.2.5).

7.3.1.20 O.INSTALL

The rationale for the SFR mapping is stated in [JC PP].

7.3.1.21 O.COMMUNICATION

This objective has been introduced in this Security Target. It is covered by the following security functional requirements:

- FTP_ITC.1/SC which ensures the origin, integrity and confidentiality of card administration commands.
- FMT_SMR.1/SD specifies the authorized identified roles enabling to send and authenticate card management commands.
- FDP_IFC.2/SC and FDP_IFF.1/SC enforces the Secure Channel Protocol information flow control policy to ensure the origin, integrity and confidentiality of administration requests.
- FMT_MSA.1/SC and FMT_MSA.3/SC covers indirectly this security objective by specifying security attributes enabling to authenticate card management requests and to guarantee the integrity and confidentiality of card management requests.

Security Target

Security requirements

- FIA_UID.1/SC and FIA_UAU.1/SC specify the actions that can be performed before authenticating the origin of the APDU commands that the card receives.
- FMT_SMF.1/SC specifies the actions activating the authentication, confidentiality and integrity check on the card management commands.

The security functional requirement FCS_COP.1 defined in [JCRE3] supports also this security objective by specifying secure cryptographic algorithm that shall be used to determine the origin of the card management commands.

7.3.1.22 O.SCP.RNG

This objective has been introduced in this Security Target and covered by O.RNG.

7.3.1.23 O.CARD-MANAGEMENT

This objective has been introduced in this Security Target. It has been remapped form the corresponding objective for the operational environment O.CARD-MANAGEMENT.

The security objective O.CARD-MANAGEMENT is met by the following SFRs:

- FDP_UIT.1/CCM enforces the Secure Channel Protocol information flow control policy and the Security Domain access control policy to ensure the integrity of card management operations.
- FDP_ROL.1/CCM ensures that card management operations may be cleanly aborted.
- FDP_ITC.2/CCM enforces the Firewall access control policy and the Secure Channel Protocol information flow policy when importing card management data.
- FPT_FLS.1/CCM preserves a secure state when failures occur.
- All SFRs related to Security Domains (FDP_ACC.1/SD, FDP_ACF.1/SD, FMT_MSA.1/SD, FMT_MSA.3/SD, FMT_SMF.1/SD, FMT_SMR.1/SD) cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.
- All SFRs related to the secure channel (FMT_MSA.1/SC, FMT_MSA.3/SC, FMT_SMF.1/SC, FIA_UAU.1/SC, FTP_ITC.1/SC, FCO_NRO.2/SC, FDP_IFC.2/SC, FDP_IFF.1/SC, FIA_UID.1/SC, FIA_UAU.4/SC) support this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.

7.3.1.24 O.SCP.RECOVERY

This objective is covered as follows:

- FAU_ARP.1 provides one aspect which refers to card tearing and power failure.
- FPT_FLS.1 states that the TOE shall preserve a secure state if an event according to FAU_ARP.1 occurs

7.3.1.25 O.SCP.SUPPORT

This objective is covered as follows:

- FCS_COP.1 provides maps to low-level-cryptographic support
- FDP_ROL.1/FIREWALL maps to low-level transaction mechanism

Note: As used in CC version 3, non-bypassability will be treated in ADV_ARC

Security Target
Security requirements

7.3.1.26 O.SCP.IC

This objective is covered by FPT_PHP.3 and FPT_TST.1.

7.3.1.27 O.SAND_BOX

This objective has been introduced in this Security Target and covered by following SFRs:

- FDP_ACC.2/SandBox Complete access control maps to the operations that can be performed from native SandBox area.
- FDP_ACF.1/SandBox provides maps to the CPU execution modes and the other access rights are managed using MPU configurations.
- FMT_MSA.1/SandBox maps to the security attributes management to restrict to CPU execution mode and the MPU configurations.
- FMT_MSA.3/SandBox maps to the static attribute initialization
- FMT_SMF.1/SandBox maps to the specification of management functions such as assignement of the memory and CPU execution mode for SandBox.

able 55 Mapping SFR to Security Objectives		
SFR	Security Objectives	
FDP_ACC.2/FIREWALL	as in [JC PP]	
FDP_ACF.1/FIREWALL	as in [JC PP]	
FDP_IFC.1/JCVM	as in [JC PP]	
FDP_IFF.1/JCVM	as in [JC PP]	
FDP_RIP.1/OBJECTS	as in [JC PP]	
FMT_MSA.1/JCRE	as in [JC PP]	
FMT_MSA.1/JCVM	as in [JC PP]	
FMT_MSA.2/FIREWALL_JCVM	as in [JC PP]	
FMT_MSA.3/FIREWALL	as in [JC PP]	
FMT_MSA.3/JCVM	as in [JC PP]	
FMT_SMF.1	as in [JC PP]	
FMT_SMR.1	as in [JC PP]	
FCS_CKM.1	as in [JC PP]	
FCS_CKM.4	as in [JC PP]	
FCS_COP.1	as in [JC PP]	
FDP_RIP.1/ABORT	as in [JC PP]	
FDP_RIP.1/APDU	as in [JC PP]	
FDP_RIP.1/bArray	as in [JC PP]	
FDP_RIP.1/GlobalArray	as in [JC PP]	
FDP_RIP.1/KEYS	as in [JC PP]	
FDP_RIP.1/TRANSIENT	as in [JC PP]	
FDP_ROL.1/FIREWALL	as in [JC PP]	
FAU_ARP.1	as in [JC PP]	

Table 55 Mapping SFR to Security Objectives

Security Target

Security Target Security requirements	
SFR	Security Objectives
FDP_SDI.2/DATA	as in [JC PP]
FPR_UNO.1	as in [JC PP]
FPT_FLS.1	as in [JC PP]
FPT_TDC.1	as in [JC PP]
FIA_ATD.1/AID	as in [JC PP]
FIA_UID.2/AID	as in [JC PP]
FIA_USB.1/AID	as in [JC PP]
	as in [JC PP]
FMT_MTD.3/JCRE	as in [JC PP]
FDP_ITC.2/Installer	as in [JC PP]
FMT_SMR.1/Installer	as in [JC PP]
FPT_RCV.3/Installer	as in [JC PP]
FPT_FLS.1/Installer	as in [JC PP]
FDP_ACC.2/ADEL	as in [JC PP]
FDP_ACF.1/ADEL	as in [JC PP]
FDP_RIP.1/ADEL	as in [JC PP]
FMT_MSA.1/ADEL	as in [JC PP]
FMT_MSA.3/ADEL	as in [JC PP]
FMT_SMF.1/ADEL	as in [JC PP]
FMT_SMR.1/ADEL	as in [JC PP]
FPT_FLS.1/ADEL	as in [JC PP]
FDP_RIP.1/ODEL	as in [JC PP]
FPT_FLS.1/ODEL	as in [JC PP]
FDP_UIT.1/CCM	O.LOAD, <u>O.CARD-MANAGEMENT</u>
FDP_ROL.1/CCM	O.OPERATE, O.RESOURCES, O.DELETION, O.INSTALL, O.RECOVERY, <u>O.CARD-MANAGEMENT</u>
FDP_ITC.2/CCM	O.SID, O.FIREWALL, O.OPERATE, O.INSTALL <u>, O.CARD-</u> <u>MANAGEMENT</u>
FDP_ITC.2/CCM	O.CARD-MANAGEMENT
FDP_ACC.1/SD	O.CARD-MANAGEMENT
FDP_ACF.1/SD	O.CARD-MANAGEMENT
FMT_MSA.1/SD	O.CARD-MANAGEMENT
FMT_MSA.3/SD	O.CARD-MANAGEMENT
FMT_SMF.1/SD	O.CARD-MANAGEMENT
FMT_SMR.1/SD	O.FIREWALL, O.RESOURCES, <u>O.CARD-MANAGEMENT,</u> <u>O.COMMUNICATION</u>
FTP_ITC.1/SC	O.LOAD, O.CARD-MANAGEMENT, O.COMMUNICATION
FCO_NRO.2/SC	O.LOAD, <u>O.CARD-MANAGEMENT</u>
FDP_IFC.2/SC	O.LOAD, O.CARD-MANAGEMENT, O.COMMUNICATION,
FDP_IFF.1/SC	O.LOAD, O.CARD-MANAGEMENT, O.COMMUNICATION,

Security Target

Security requirements		
SFR	Security Objectives	
FMT_MSA.1/SC	O.SID, O.FIREWALL, O.CARD-MANAGEMENT, O.COMMUNICATION,	
FMT_MSA.3/SC	O.SID, O.FIREWALL, O.CARD-MANAGEMENT, O.COMMUNICATION,	
FMT_SMF.1/SC	O.SID, O.FIREWALL, O.RESOURCES, O.CARD-MANAGEMENT	
FIA_UID.1/SC	O.COMMUNICATION, O.CARD-MANAGEMENT	
FIA_UAU.1/SC	O.COMMUNICATION, O.CARD-MANAGEMENT	
FIA_UAU.4/SC	O.COMMUNICATION, O.CARD-MANAGEMENT	
FCS_RNG.1	O.RNG, O.SCP.RNG	
<u>FPT_PHP.3</u>	O.SCP.IC	
<u>FPT_TST.1</u>	O.SCP.IC	
FDP_ACC.2/SandBox	O.SAND_BOX	
FDP_ACF.1/SandBox	O.SAND_BOX	
FMT_MSA.1/SandBox	O.SAND_BOX	
FMT_MSA.3/SandBox	O.SAND_BOX	
FMT_SMF/SandBox	O.SAND_BOX	

7.3.2 Security assurance requirements rationale

The level EAL6+ has been chosen, because this Java Card platform will host applets with the highest security requirements (e.g. Government ID and signature applications).

The augmentation ALC_FLR.1 has been added to support systematic maintenance of the TOE over its complete life cycle.

7.3.2.1 ADV_SPM.1

The EAL6+ level contains the SAR ADV_SPM.1, which is called the Security Policy Model (SPM). The details of the model are described in [SPM].

ADV_SPM.1.1D

The developer shall provide a formal security policy model for <u>the Java Card System Firewall access control</u> <u>policy as defined in with the following SFRs covered:</u>¹

- FDP_ACF.1/FIREWALL
- FMT_MSA.1/JCRE
- FMT_MSA.1/JCVM
- FMT_MSA.2/FIREWALL_JCVM
- FMT_SMF.1

ADV_SPM.1.2D

For each policy covered by the formal security policy model, the model shall identify the relevant portions of the statement of SFRs that make up that policy.

ADV_SPM.1.3D

¹ [assignment: list of policies that are formally modelled]

Security Target

Security requirements

The developer shall provide a formal proof of correspondence between the model and any formal functional specification.

ADV_SPM.1.4D

The developer shall provide a demonstration of correspondence between the model and the functional specification.

7.4 Dependencies

7.4.1 SFR dependencies

Table 56SFR Dependencies

Requirements	CC Dependencies	Satisfied Dependencies
FDP_ITC.2/Installer	as in [JC PP]	as in [JC PP]
FMT_SMR.1/Installer	as in [JC PP]	as in [JC PP]
FPT_FLS.1/Installer	as in [JC PP]	as in [JC PP]
FPT_RCV.3/Installer	as in [JC PP]	as in [JC PP]
FDP_ACC.2/ADEL	as in [JC PP]	as in [JC PP]
FDP_ACF.1/ADEL	as in [JC PP]	as in [JC PP]
FDP_RIP.1/ADEL	as in [JC PP]	as in [JC PP]
FMT_MSA.1/ADEL	as in [JC PP]	as in [JC PP]
FMT_MSA.3/ADEL	as in [JC PP]	as in [JC PP]
FMT_SMF.1/ADEL	as in [JC PP]	as in [JC PP]
FMT_SMR.1/ADEL	as in [JC PP]	as in [JC PP]
FPT_FLS.1/ADEL	as in [JC PP]	as in [JC PP]
FDP_RIP.1/ODEL	as in [JC PP]	as in [JC PP]
FPT_FLS.1/ODEL	as in [JC PP]	as in [JC PP]
FDP_UIT.1/CCM	(FDP_ACC.1 or FDP_IFC.1) and	FDP_IFC.2/SC, FDP_ITC.2/CCM
	(FTP_ITC.1 or FTP_TRP.1)	
FDP_ROL.1/CCM	(FDP_ACC.1 or FDP_IFC.1)	FDP_ACC.1/SD
FDP_ITC.2/CCM	(FDP_ACC.1 or FDP_IFC.1) and	FDP_ACC.1/SD, FTP_ITC.1/SC
	(FPT_TDC.1) and (FTP_ITC.1 or	
	FTP_TRP.1)	
FPT_FLS.1/CCM	No dependencies	
FDP_ACC.1/SD	(FDP_ACF.1)	FDP_ACF.1/SD
FDP_ACF.1/SD	(FDP_ACC.1) and (FMT_MSA.3)	FDP_ACC.1/SD, FMT_MSA.3/SD
FMT_MSA.1/SD	(FDP_ACC.1 or FDP_IFC.1) and	FDP_ACC.1/SD, FMT_SMF.1/SD,
	(FMT_SMF.1) and (FMT_SMR.1)	FMT_SMR.1/SD
FMT_MSA.3/SD	(FMT_MSA.1) and (FMT_SMR.1)	FMT_MSA.1/SD, FMT_SMR.1/SD
FMT_SMF.1/SD	No dependencies	
FMT_SMR.1/SD	(FIA_UID.1)	FIA_UID.1/SC

Security Target
Security requirements

Requirements	CC Dependencies	Satisfied Dependencies
FTP_ITC.1/SC	No dependencies	
FCO_NRO.2/SC	(FIA_UID.1)	FIA_UID.1/SC
FDP_IFC.2/SC	(FDP_IFF.1)	FDP_IFF.1/SC
FDP_IFF.1/SC	(FDP_IFC.1) and (FMT_MSA.3)	FDP_IFC.2/SC, FMT_MSA.3/SC
FMT_MSA.1/SC	(FDP_ACC.1 or FDP_IFC.1) and	FDP_ACC.1/SD, FMT_SMR.1/SD,
	(FMT_SMF.1) and (FMT_SMR.1)	FMT_SMF.1/SC
FMT_MSA.3/SC	(FMT_MSA.1) and (FMT_SMR.1)	FMT_SMR.1/SD, FMT_MSA.1/SC
FMT_SMF.1/SC	No dependencies	
FIA_UID.1/SC	No dependencies	
FIA_UAU.1/SC	(FIA_UID.1)	FIA_UID.1/SC
FIA_UAU.4/SC	No dependencies	
FDP_ACC.2/FIREWALL	as in [JC PP]	as in [JC PP]
FDP_ACF.1/FIREWALL	as in [JC PP]	as in [JC PP]
FDP_IFC.1/JCVM	as in [JC PP]	as in [JC PP]
FDP_IFF.1/JCVM	as in [JC PP]	as in [JC PP]
FDP_RIP.1/OBJECTS	as in [JC PP]	as in [JC PP]
FMT_MSA.1/JCRE	as in [JC PP]	as in [JC PP]
FMT_MSA.1/JCVM	as in [JC PP]	as in [JC PP]
FMT_MSA.2/FIREWALL_JCVM	as in [JC PP]	as in [JC PP]
FMT_MSA.3/FIREWALL	as in [JC PP]	as in [JC PP]
FMT_MSA.3/JCVM	as in [JC PP]	as in [JC PP]
FMT_SMF.1	as in [JC PP]	as in [JC PP]
FMT_SMR.1	as in [JC PP]	as in [JC PP]
FCS_CKM.1	as in [JC PP]	as in [JC PP]
FCS_CKM.4	as in [JC PP]	as in [JC PP]
FCS_COP.1	as in [JC PP]	as in [JC PP]
FDP_RIP.1/ABORT	as in [JC PP]	as in [JC PP]
FDP_RIP.1/APDU	as in [JC PP]	as in [JC PP]
FDP_RIP.1/bArray	as in [JC PP]	as in [JC PP]
FDP_RIP.1/GlobalArray	as in [JC PP]	as in [JC PP]
FDP_RIP.1/KEYS	as in [JC PP]	as in [JC PP]
FDP_RIP.1/TRANSIENT	as in [JC PP]	as in [JC PP]
FDP_ROL.1/FIREWALL	as in [JC PP]	as in [JC PP]
FAU_ARP.1	as in [JC PP]	as in [JC PP]
FDP_SDI.2/DATA	as in [JC PP]	as in [JC PP]
FPR_UNO.1	as in [JC PP]	as in [JC PP]
FPT_FLS.1	as in [JC PP]	as in [JC PP]
FPT_TDC.1	as in [JC PP]	as in [JC PP]
FIA_ATD.1/AID	as in [JC PP]	as in [JC PP]

Security Target

infineon

Requirements	CC Dependencies	Satisfied Dependencies
FIA_UID.2/AID	as in [JC PP]	as in [JC PP]
FIA_USB.1/AID	as in [JC PP]	as in [JC PP]
FMT_MTD.1/JCRE	as in [JC PP]	as in [JC PP]
FMT_MTD.3/JCRE	as in [JC PP]	as in [JC PP]
FCS_RNG.1	No Dependencies	n.A.
FPT_PHP.3	No Dependencies	n.A.
PT_TST.1	No dependencies	n.A.
FDP_ACC.2/SandBox	(FDP_ACF.1)	FDP_ACF.1/SandBox
DP_ACF.1/SandBox	(FDP_ACC.1) and (FMT_MSA.3)	FDP_ACC.2/SandBox
		FMT_MSA.3/SandBox
MT_MSA.1/SandBox	(FDP_ACC.1 or FDP_IFC.1) and	FDP_ACC.2/SandBox
	(FMT_SMR.1) and (FMT_SMF.1)	FMT_SMR.1
		FMT_SMF.1/SandBox
MT_MSA.3/SandBox	(FMT_MSA.1) and (FMT_ SMR.1)	FMT_MSA.1/SandBox
		FMT_SMR.1
-MT_SMF.1/SandBox	No dependencies	n.A.

Note: FCS_CKM.1 relates to all iterations defined in 7.2.1.13

Note: FCS_COP.1 *relates to all iterations defined in* 7.2.1.15

- Note: The dependency FIA_UID.1 of FMT_SMR.1/Installer is unsupported. This ST does not require the identification of the "installer" since it can be considered as part of the TSF.
- *Note: The dependency FIA_UID.1 of FMT_SMR.1/ADEL is unsupported. This ST does not require the identification of the "deletion manager" since it can be considered as part of the TSF.*
- Note: The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is unsupported. The dependency between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied because no management functions are required for the Java Card RE.
- Note: The dependency FAU_SAA.1 of FAU_ARP.1 is unsupported. The dependency of FAU_ARP.1 on FAU_SAA.1 assumes that a "potential security violation" generates an audit event. On the contrary, the events listed in FAU_ARP.1 are self-contained (arithmetic exception, ill-formed bytecodes, access failure) and ask for a straightforward reaction of the TSFs on their occurrence at runtime. The JCVM or other components of the TOE detect these events during their usual working order. Thus, there is no mandatory audit recording in this ST.
 - Note: The dependency with FMT_MSA.1/SandBox of FMT_SMR.1 is not applicable. Only S.JCRE is allowed to modify security attributes for the SandBox before S.SandBoxNativeCode is executed.
 - *Note: The dependency with FMT_MSA.3/SandBox of FMT_SMR.1 is not applicable. The TOE does not allow to specify alternative initial values for the security attributes of the SandBox.*

public SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Security Target

Security requirements

7.4.2 SAR dependencies

Table 57SAR dependenies

Requirements	CC Dependencies	Satisfied Dependencies
ADV_ARC.1	(ADV_FSP.1) and (ADV_TDS.1)	ADV_FSP.4, ADV_TDS.3
ADV_FSP.5	(ADV_TDS.1) and (ADV_IMP.1)	ADV_TDS.3, ADV_IMP.1
ADV_IMP.1	(ADV_TDS.3) and (ALC_TAT.1)	ADV_TDS.3, ALC_TAT.2
ADV_INT.2	(ADV_IMP.1) and (ADV_TDS.3) and (ALC_TAT.1)	ADV_TDS.3, ADV_IMP.1, ALC_TAT.2
ADV_TDS.4	(ADV_FSP.5)	ADV_FSP.5
AGD_OPE.1	(ADV_FSP.1)	ADV_FSP.5
AGD_PRE.1	No dependencies	
ALC_CMC.4	(ALC_CMS.1) and (ALC_DVS.1) and (ALC_LCD.1)	ALC_CMS.4, ALC_DVS.2, ALC_LCD.1
ALC_CMS.5	No dependencies	
ALC_DEL.1	No dependencies	
ALC_DVS.2	No dependencies	
ALC_LCD.1	No dependencies	
ALC_TAT.2	(ADV_IMP.1)	ADV_IMP.1
ASE_CCL.1	(ASE_ECD.1) and (ASE_INT.1) and (ASE_REQ.1)	ASE_ECD.1, ASE_INT.1, ASE_REQ.2
ASE_ECD.1	No dependencies	
ASE_INT.1	No dependencies	
ASE_OBJ.2	(ASE_SPD.1)	ASE_SPD.1
ASE_REQ.2	(ASE_ECD.1) and (ASE_OBJ.2)	ASE_ECD.1, ASE_OBJ.2
ASE_SPD.1	No dependencies	
ASE_TSS.1	(ADV_FSP.1) and (ASE_INT.1) and (ASE_REQ.1)	ADV_FSP.5, ASE_INT.1, ASE_REQ.2
ATE_COV.2	(ADV_FSP.2) and (ATE_FUN.1)	ADV_FSP.5, ATE_FUN.1
ATE_DPT.3	(ADV_ARC.1) and (ADV_TDS.2) and (ATE_FUN.1)	ADV_ARC.1, ADV_TDS.3, ATE_FUN.1
ATE_FUN.1	(ATE_COV.1)	ATE_COV.2
ATE_IND.2	(ADV_FSP.2) and (AGD_OPE.1) and (AGD_PRE.1) and (ATE_COV.1) and (ATE_FUN.1)	ADV_FSP.5, AGD_OPE.1, AGD_PRE.1, ATE_COV.2, ATE_FUN.1
AVA_VAN.5	(ADV_ARC.1) and (ADV_FSP.4) and (ADV_IMP.1) and (ADV_TDS.3) and (AGD_OPE.1) and (AGD_PRE.1) and (ATE_DPT.1)	ADV_ARC.1, ADV_FSP.5, ADV_IMP.1, ADV_TDS.3, AGD_OPE.1, AGD_PRE.1, ATE_DPT.1

7.5 Statement of compatibility

The statement of compatibility is described in the document [SOC].

Security Target **TOE summary specification**

8 **TOE** summary specification

8.1 SF.Firewall

The TOE implements an applet firewall according to [JCRE3], chapter 6. Each applet on the TOE must have been passed the Bytecode Verifier in order to ensure correct applet isolation. As an additional defensive security feature also a type check for API array parameters is performed.

This TSF enforces the following SFRs:

- FDP_ACC.2/FIREWALL Complete access control
- FDP_ACF.1/FIREWALL Security attribute based access control
- FDP_IFC.1/JCVM Subset information flow control
- FDP_IFF.1/JCVM Simple security attributes
- FMT_MSA.1/JCRE Management of security attributes
- FMT_MSA.2/FIREWALL_JCVM Secure security attributes
- FMT_MSA.3/FIREWALL Static attribute initialisation
- FMT_MSA.3/JCVM Static attribute initialization
- FMT_SMF.1 Specification of Management Functions
- FMT_SMR.1 Security roles
- FDP_ROL.1/FIREWALL Basic rollback
- FDP_ITC.2/CCM Import of user data with security attributes
- FMT_MSA.1/JCVM Management of security attributes
- FMT_MTD.1/JCRE Management of TSF data

8.2 SF.RIP

This TSF ensures that sensitive information are made unavailable after deletion. This will be done by overwriting keys, APDU buffer and transient objects with zeros or random values. Applications and persistent objects will be marked as deleted. If the deleted resource is resused by a new object creation, the previous content will be set to zero.

This TSF enforces the following SFRs:

- FDP_RIP.1/bArray Subset residual information protection
- FDP_RIP.1/APDU Subset residual information protection
- FDP_RIP.1/KEYS Subset residual information protection
- FDP_RIP.1/TRANSIENT Subset residual information protection
- FDP_RIP.1/ADEL Subset residual information protection
- FDP_RIP.1/ODEL Subset residual information protection
- FDP_RIP.1/ABORT Subset residual information protection
- FDP_RIP.1/GlobalArray Subset residual information protection
- FDP_RIP.1/OBJECTS Subset residual information protection

Security Target

TOE summary specification

8.3 SF.Rollback

The TOE implements atomicity and rollback mechanism for Java Card runtime environment [JCRE3] and GlobalPlatform management functions (see [GP v23]). The TOE also ensures that objects created during an aborted transaction are made unavailable.

This TSF enforces the following SFRs:

- FPT_RCV.3/Installer Automated recovery without undue loss
- FDP_ROL.1/FIREWALL Basic rollback
- FDP_ROL.1/CCM Basic rollback
- FDP_RIP.1/ABORT Subset residual information protection

8.4 SF.SCP

The TOE implements secure channel protocols according to [GP v23], chapter 10. The following protocols are supported:

- SCP02 (with options 0x15 or 0x55) according to [GP v23], appendix E
- SCP03 (with options 0x00 or 0x10) according to [GPv23 Amd D]

The SCP uses as the basic cryptographic primitives the security hardened symmetric cryptographic library which is CC EAL 6+ certified together with the underlying platform.

This TSF enforces the following SFRs:

- FDP_UIT.1/CCM Data exchange integrity
- FTP_ITC.1/SC Inter-TSF trusted channel
- FCO_NRO.2/SC Enforced proof of origin
- FDP_IFC.2/SC Complete information flow control
- FDP_IFF.1/SC Simple security attributes
- FMT_MSA.1/SC Management of security attributes
- FMT_MSA.3/SC Static attribute initialisation
- FMT_SMF.1/SC Specification of Management Functions
- FIA_UID.1/SC Timing of identification
- FIA_UAU.1/SC Timing of authentication
- FIA_UAU.4/SC Single-use authentication mechanisms
- FMT_SMR.1/SD Security roles
- FCS_COP.1 Cryptographic operation

The underlying platform supports this TSF by the following SFRs from [ST_IC].

- FCS_CKM.4.1/SCL (O.AES)
- FCS_CKM.4.1/SCL (O.TDES)
- FCS_COP.1/SCL/TDES
- FCS_COP.1/SCL/AES
- FCS_COP1/SCL/AES-MAC

Security Target

TOE summary specification

8.5 SF.CM

The TOE implements an access control policy for GlobalPlatform card management functions according to [GP v23], chapters 9.1 and 9.3 – 9.6.

This TSF enforces the following SFRs:

- FDP_ACC.1/SD Subset access control
- FDP_ACF.1/SD Security attribute based access control
- FMT_MSA.1/SD Management of security attributes
- FMT_MSA.3/SD Static attribute initialisation
- FMT_SMF.1/SD Specification of Management Functions
- FMT_SMR.1/SD Security roles
- FPT_TDC.1 Inter-TSF basic TSF data consistency
- FIA_ATD.1/AID User attribute definition
- FIA_UID.2/AID User identification before any action
- FIA_USB.1/AID User-subject binding
- FDP_ITC.2/Installer Import of user data with security attributes
- FMT_SMR.1/Installer Security roles
- FPT_RCV.3/Installer Automated recovery without undue loss
- FPT_FLS.1/Installer Failure with preservation of secure state
- FDP_ACC.2/ADEL Complete access control
- FDP_ACF.1/ADEL Security attribute based access control
- FDP_RIP.1/ADEL Subset residual information protection
- FMT_MSA.1/ADEL Management of security attributes
- FMT_MSA.3/ADEL Static attribute initialisation
- FMT_SMR.1/ADEL Security roles
- FPT_FLS.1/ADEL Failure with preservation of secure state
- FMT_SMF.1/ADEL Specification of Management Functions
- FPT_FLS.1/CCM Failure with preservation of secure state
- FPT_FLS.1/ODEL Failure with preservation of secure state
- FMT_MTD.3/JCRE Secure TSF data

8.6 SF.Physical

The TOE provides means to protect SFRs against physical tampering and leakage. The TOE uses mainly the physical security measures of the underlying hardware platform. The core building blocks of the hardware security are the Instruction Stream Signature Checking (ISS) and the secure coded HSL library. As an additional line of defense, the Memory Protection Unit (MPU) of the hardware IC will be used for protecting the key store.

This TSF enforces the following SFRs:

- FAU_ARP.1 Security alarms
- FDP_SDI.2/DATA Stored data integrity monitoring and action
- FPT_PHP.3 Resistance to physical attacks

public SECORA[™] ID v2.02 (SLJ38Gxymm2ap)

Security Target

TOE summary specification

- FPT_TST.1 TSF testing
- FPT_FLS.1 Failure with preservation of secure state

The underlying platform supports this TSF by the following SFRs from [ST_IC].

- FPT_PHP.3 •
- FPT_FLS.1 •
- FDP_ITT.1 •
- FDP_SDC.1 •
- FDP_SDI.2 •
- FPT_FLS.1
- FPT_ITT.1 ٠
- FPT_TST.1 ٠
- FRU_FLT.2 ٠
- FDP_ACC.1
- FDP_ACF.1 ٠
- FMT_MSA.1 ٠
- FMT_MSA.3 •
- FMT_SMF.1
- FPT_TST.2 •

8.7 SF.CS

The TOE provides cryptographic services for applets as described in 7.2.1.13 and 7.2.1.15. The cryptographic API uses as the basic cryptographic primitives the security hardened symmetric and asymmetric cryptographic library which is CC EAL 6+ certified together with the underlying platform.

The random numbers class PTG.2, PTG.3 and DRG.4 are generated by a hardware number generator provided by the platform.

The Java Card OS also implements especially hardened cryptographic algorithms for PACE with generic mapping and ICAO, ISO 18013 and GlobalPlatform SCP secure messaging.

This TSF enforces the following SFRs:

- FCS_CKM.1 Cryptographic key generation ٠
- FCS_CKM.4 Cryptographic key destruction ٠
- FCS_COP.1 Cryptographic operation ٠
- FPR_UNO.1 Unobservability ٠
- FCS_RNG.1 Random number generation (Class PTG.2) ٠
- FCS_RNG.1 Random number generation (Class PTG.3) ٠
- FCS_RNG.1 Random number generation (Class DRG.4) ٠

Note: FCS_CKM.1 and FCS_COP.1 comprise all CC iterations described in 7.2.1.13 and 7.2.1.15

The underlying platform supports this TSF by the following SFRs from [ST_IC].

- FCS_CKM.1/ECC
- FCS_CKM.1/RSA •

Final

Rev 1.1

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target

TOE summary specification

- FCS_COP.1/ECC
- FCS_COP.1/RSA
- FCS_CKM.4/SCL
- FCS_COP.1/SCL/AESFCS_COP.1/SCL/TDES
- FCS_RNG.1/HPRG
- FCS_RNG.1/TRNG
- FCS_RNG.1/DRNG4
- FCS_COP.1/SCP/TDES
- FCS_COP.1/SCP/AES
- FCS_CKM.4/SCP
- FCS_COP.1/HCL

8.8 SF.PIN

The TOE implements secure PIN compare functions and integrity protection of the PIN.

This TSF enforces the following SFRs:

- FPR_UNO.1 Unobservability
- FDP_SDI.2/DATA Stored data integrity monitoring and action

The underlying platform supports this TSF by the following SFRs from [ST_IC].

- FDP_SDC.1
- FDP_SDI.2
- FPT_PHP.3

8.9 SF.SAND_BOX

The TOE implements SandBox framework to execute the third party native library without harming the TOE.

This TSF enforces the following SFRs:

- FDP_ACC.2/SandBox Complete access control
- FDP_ACF.1/SandBox Security attribute based access control
- FMT_MSA.1/SandBox Management of security attributes
- FMT_MSA.3/SandBox Static attribute initialization
- FMT_SMF.1/SandBox Specification of Management Functions

The underlying platform supports this TSF by the following SFRs from [ST_IC].

- FMT_MSA.1
- FMT_MSA.3
- FMT_SMF.1

Final

infineon

Security Target **TOE summary specification**

<mark>public</mark> SECORA™ ID v2.02 (SLJ38Gxymm2ap)

Security Target References

9 References

Number	Bibliography
[CC1]	Common Criteria Part 1, version 3.1, revision 5
[CC2]	Common Criteria Part 2, version 3.1, revision 5
[CC3]	Common Criteria Part 3, version 3.1, revision 5
[JCAPI3]	Java Card Application Programming Interface, Classic edition version 3.1
[JCRE3]	Java Card Runtime Environment Specification, Classic edition version 3.1
[JCVM3]	Java Card Virtual Machine Specification, Classic edition version 3.1
[PKCS v1.5]	PKCS v1.5
[PKCS v2.2]	PKCS v2.2
[JC PP]	Java Card System – Open Configuration Protection Profile, April 2020, Version 3.1
[JC USIM PP]	(U)SIM Java Card Platform Protection Profile 2.0.2
[SP800-67]	NIST SP 800-67
[SP800-38A]	NIST SP 800-38A
[SP800-38B]	NIST SP 800-38B
[FIPS 197]	FIPS 197
[FIPS 180-4]	FIPS 180-4
[FIPS 186-4]	FIPS 186-4
[FIPS PUB 198-1]	FIPS PUB 198-1
[SEC1]	Certicom SEC1
[ISO9797]	ISO/IEC 9797
[GP v23]	GlobalPlatform Card Specification v2.3.1
[GPv23 Amd D]	GlobalPlatform: Amendment D (Version 1.1.1), July 2014
[GP Amd E]	GlobalPlatform: Amendment E (Version 1.0), November 2011
[GPFC]	GlobalPlatform: Financial Configuration (Version 1.0.2), November 2019
[GPCIC]	GlobalPlatform: Common Implementation Configuration, (Version 2.1), July 2018
[DOC9303]	ICAO DOC 9303 part 11
[PP0084]	Common Criteria Protection Profile, Security IC Platform, BSI-PP-0084-2014
[ST_IC]	Security Target for BSI-DSZ-CC-1169-V4-2024
[X9.62]	ANSI X9.62-2005
[ISO14888-3]	ISO/IEC 14888-3:2006
[ISO18013-3]	ISO/IEC 18013-3: 2009
[ISO9796-2]	ISO/IEC 9796-2:2010
[ISO9797-1]	ISO/IEC 9797-1:2011
[IEEE P1363]	IEEE Std 1363-2000
[TR 03111]	TR 03111
[RFC 5639]	RFC 5639
[AIS 31]	AIS 31, BSI
[ADMIN]	SECORA™ ID v2.02 (SLJ38Gxymm2ap) Administration Guide
[DATASHEET]	SECORA™ ID v2.02 (SLJ38Gxymm2ap) Extended datasheet

Final

Security Target	
References	
[SECGUIDE]	SECORA™ ID v2.02 (SLJ38Gxymm2ap) Security Guide
[APISPEC]	SECORA™ ID v2.02 (SLJ38Gxymmmap) Product API Specification
[SOC]	Statement of Compatibility
[SPM]	Java card firewall model in COQ
[TR-03110-Part-2]	Technical Guideline TR-03110 Advanced Security Mechanisms for Machine Readable Travel Documents and eIDAS Token – Part 2: Protocols for electronic IDentification, Authentication and trust Services (eIDAS), Version 2.21, 21. December 2016

Revision History

Reference	Description of change	
Revision 1.1, 2024-12-19		
All	Finalized version for certification	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-19

Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: dsscustomerservice@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.