

1

[ST] VOS AutoSAR-OS Security Target v1.5

2023-06-30

Huawei Technologies Co., Ltd.

华为技术有限公司

All rights reserved

版权所有 侵权必究

2

VOS AutoSAR-OS V3.0.0 Security

Target

华为技术有限公司

Huawei Technologies Co., Ltd.

3

Change History

Date Version Description

2023-01-19 1.0 Complete version

2023-03-04 1.1 Update Trust OSA’s Access Permission

2023-04-17 1.2 Update Table 3.2 TOE deliverable list and TOE type

2023-05-25 1.3 Update Table 1-1 document titles

2023-06-12 1.4 Update of A.PLATFORM and OE.PLATFORM to add

physical attack protection

2023-06-30 1.5 Update of links in table 1 and editorial corrections on

pages 1 and 26.

4

Table of Contents

1 ST INTRODUCTION ... 7

1.1 ST REFERENCE AND TOE REFERENCE .. 7

1.1.1 ST reference .. 7

1.1.2 TOE Reference .. 7

1.2 TOE OVERVIEW ... 7

1.2.1 TOE Type ... 7

1.2.2 TOE usage and major security features 7

1.2.3 Non-TOE hardware/software/firmware required by the TOE 8

1.3 TOE DESCRIPTION ... 8

1.3.1 TOE logical scope ... 8

1.3.2 TOE Operational Environment .. 12

1.3.3 TOE physical scope ... 13

1.4 TERMS AND ABBREVIATIONS .. 14

1.4.1 Terms .. 14

1.4.2 Acronyms .. 15

2 CONFORMANCE CLAIMS ... 16

3 SECURITY PROBLEM DEFINITION 16

3.1 USER ... 17

3.2 ASSETS ... 17

3.3 THREATS .. 17

3.3.1 Unauthorized access (T.UNAUTHORIZED_ACCESS) 17

3.3.2 Invalid Memory Access (T.MEMORY_ACCESS) 17

3.3.3 System resource monopoly (T.RESOURCE_MONOPLY) 17

3.4 ASSUMPTIONS .. 18

3.4.1 Hardware platform (A.PLATFORM) 18

3.4.2 Personnel (A.PERSONNEL) ... 18

4 SECURITY OBJECTIVES ... 19

4.1 SECURITY OBJECTIVES FOR THE TOE ... 19

4.1.1 Permission-based Access Control (O.ACCESS_CONTROL) 19

4.1.2 Memory Access Control (O.MEMORY_CONTROL) 19

4.1.3 Priority (O.PRIORITY) .. 19

4.1.4 Time protection control (O.TIMING_CONTROL) 19

4.1.5 Stack Monitor (O.STACK_MONITOR) 19

4.1.6 Secure state (O.SECURE_STATE) 19

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT 19

5

4.2.1 Hardware platform (OE.PLATFORM) 19

4.2.2 Personnel (OE.PERSONNEL) .. 20

5 SECURITY REQUIREMENTS ... 20

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS 20

5.1.1 User Data Protection (FDP) ... 22

5.1.2 Identification and Identification (FIA) 24

5.1.3 Security Management (FMT) ... 26

5.1.4 Protection of the TSF (FPT) ... 27

5.1.5 Resource Utilisation (FRU) .. 27

5.2 TOE SECURITY ASSURANCE REQUIREMENTS 28

6 TOE SUMMARY SPECIFICATION 28

6.1 SF.OSID: OS OBJECT IDENTIFICATION .. 29

6.1.1 Function summary ... 29

6.1.2 Corresponding SFRs .. 29

6.2 SF.OSOM: OS OBJECT MANAGEMENT ... 30

6.2.1 Function summary ... 30

6.2.2 Corresponding SFRs .. 30

6.3 SF.OSAM: OS APPLICATION MANAGEMENT 31

6.3.1 Function summary ... 31

6.3.2 Corresponding SFRs .. 32

6.4 SF.OSSP: OS SERVICE PROTECTION .. 32

6.4.1 Function summary ... 32

6.4.2 Corresponding SFRs .. 33

6.5 SF.MP: MEMORY PROTECTION .. 33

6.5.1 Function summary ... 34

6.5.2 Corresponding SFRs .. 35

6.6 SF.SM: STACK MONITORING ... 35

6.6.1 Function summary ... 35

6.6.2 Corresponding SFRs .. 36

6.7 SF.TS: TASK SCHEDULING ... 36

6.7.1 Function summary ... 36

6.7.2 Corresponding SFRs .. 37

6.8 SF.TP: TIME PROTECTION .. 37

6.8.1 Function summary ... 37

6.8.2 Corresponding SFRs .. 38

6.9 SF.EH: ERROR HANDLING AND EXCEPTION HANDLING 38

6.9.1 Function summary ... 38

6.9.2 Corresponding SFRs .. 38

6

7 RATIONALES .. 39

7.1 SECURITY OBJECTIVE RATIONALE .. 39

7.2 SECURITY REQUIREMENTS RATIONALE .. 41

7.2.1 SFR tracing .. 41

7.2.2 Dependency justification ... 42

7.2.3 Chosen SARs ... 44

8 REFERENCES ... 44

2023-06-30 第 7 页

1 ST introduction

1.1 ST reference and TOE reference

1.1.1 ST reference

ST title: VOS AutoSAR-OS V3.0.0 Security Target

ST version: 1.5

ST publication date: 2023-06-30

ST author: Huawei Technologies Co., Ltd.

1.1.2 TOE Reference

TOE name: VOS AutoSAR-OS

TOE version: V3.0.0

1.2 TOE Overview

1.2.1 TOE Type

The TOE is the kernel of the Huawei intelligent vehicle control

operating system that is Compatible with the AutoSAR CP standard

[AUTOSAR].

1.2.2 TOE usage and major security features

As the operating system kernel software for vehicle control, the TOE

can be used in various Electronic Control Unit (ECU) products of a vehicle.

The TOE provides a software platform for application developers to

develop applications that control the ECU.

The major security features of the TOE include:

 SF.OSID: OS Object Identification

 SF.OSOM: OS Object Management

 SF.OSAM: OS Application Management

 SF.OSSP: OS Service Protection

2023-06-30 第 8 页

 SF.MP: Memory Protection

 SF.SM: Stack Monitoring

 SF.TS: Task Scheduling

 SF.TP: Time Protection

 SF.EH: Error Handling and Exception Handling

1.2.3 Non-TOE hardware/software/firmware required by the TOE

The TOE runs on the hardware MCU of the ECU, and requires one of

the following supported hardware architectures:

 Tricore：TC264,TC277,TC357,TC377,TC389,TC397；

 “HAS Studio Configurator”is an ECU configuration tool for vehicle

control software development. This configuration tool is required to

configure the security attributes for each application. You can configure

the TOE in preparation phase on the GUI and generate the dynamic code

of the TOE. Dynamic code (as configuration parameters, including security

configuration parameters) cannot be modified during running. It

compiles with static code to generate a runnable TOE.)

The TOE does not include the applications running on the TOE,

which need to be developed by the application developer. These

applications are included into a final image using a configuration tool

that fixes the security attributes for each application.

1.3 TOE Description

1.3.1 TOE logical scope

As the kernel of an operating system, the TOE provides functions

2023-06-30 第 9 页

such as task management, task scheduling, resource (lock) management,

event mechanism, interrupt management, clock, alarm and scheduling

table, and exception handling for the normal operation of upper-layer

applications. The hardware abstraction layer shields hardware differences

upwards, provides standard AutoSAR OS APIs, and builds an AutoSAR

OS-based software ecosystem. It is mainly used in the field of vehicle

MCUs. Figure 1-1 shows the TOE system framework inside its operational

environment.

Figure 1-1 TOE System Framework

The TOE consists of the following security-related modules, as shown

in Figure 1-2.

2023-06-30 第 10 页

Figure 1-2 TOE Security Architecture

The following components are included, each providing its own

Security Feature (SF):

 SF.OSID: OS Object ID

 SF.OSOM: OS Object Management

Permission control, which includes

 SF.OSAM: OSA Management

 SF.OSSP: OS Service Protection

 SF.MP: Memory Protection

Resource utilization, which includes

 SF.TS: Task Scheduling

 SF.TP: Time Protection

 SF.EH: Error Handling and Exception Handling

 SF.SM: Stack Monitoring

The following sections describes each of these features in more detail.

2023-06-30 第 11 页

1.3.1.1 SF.OSID: OS Object Identification

The TOE allocates OS object IDs to various OS objects.

1.3.1.2 SF.OSOM: OS Object Management

The OS allows to manage OS objects by providing the corresponding

structure array of the kernel OS object to initialize them. This can be

supported by an OS configuration tool.

1.3.1.3 SF.OSAM: OS Application Management

An OS Application (OSA) is a collection of OS objects that manages

the resources (data segments and code segments) shared by these

objects. An OS object can only belong to one OSA. The OSA is also

considered the basic unit for sharing resources and configuring

permissions.

OSAs are classified into trusted OSAs, which run in the kernel

privilege, and untrusted OSAs, which is a traditional user application

running in the user privilege.

1.3.1.4 SF.OSSP: OS Service Protection

The TOE allows the user to configure permissions based on the OSA.

Each OS object in the same OSA has the same permission. Based on the

permissions, OSAs are allowed access to other OS objects or not.

1.3.1.5 SF.MP: Memory Protection

The TOE configures the non-TOE hardware MPU for each OSA data

segment and code segment, and configures the read and write

permissions on the MPU. When accesses are performed, the MPU will

2023-06-30 第 12 页

accept or reject these accesses, and TOE operation will continue based on

the MPU response.

1.3.1.6 SF.SM: Stack Monitoring

The TOE provides a stack monitoring function. The TOE allocates a

task stack to each task to prevent stack operations from going out of

bounds and provides a stack protection function. If the stack operation of

a user task exceeds the defined threshold, exception handling will be

triggered.

1.3.1.7 SF.TS: Task Scheduling

The priority-based FIFO scheduling mechanism of the TOE provides

a reasonable CPU resource usage mode for tasks.

1.3.1.8 SF.TP: Time Protection

The user can configure the maximum running time of a single task.

If the maximum running time exceeds the maximum running time (as

reported by a non-TOE hardware timer, a time protection exception is

triggered.

1.3.1.9 SF.EH: Error Handling and Exception Handling

 Error handling: When an error occurs, the TOE invokes ErrorHook to

handle the error.

 Exception handling: When an exception occurs, the TOE saves the

exception onsite data and triggers the ProtectionHook. Users can read

the exception onsite data in the ProtectionHook for fault locating and

classifying system or task exceptions in the ProtectionHook.

1.3.2 TOE Operational Environment

Hardware is the physical part of the TOE operational environment. The

TOE needs to adapt to different hardware platforms to shield hardware

2023-06-30 第 13 页

differences and provide unified basic services, including protection

against hardware attacks. During the evaluation, the TOE runs on the

Tricore chip. The hardware environment of the TOE includes CPUs, RAMs,

ROMs (not mandatory), system clocks, interrupt controllers, and MPUs.

1.3.3 TOE physical scope

The physical scope of the TOE includes operating system software

and the corresponding installation, configuration, and operation

guidance, as shown in Table 1-1. The software part, as shown in the solid

line in Figure 1-2, belongs to the TOE security architecture. Other

contents are beyond the TOE physical boundaries. Hardware, firmware,

trusted OSA, and untrusted OSA are not covered by TOE.

TOE upper boundary: The TOE provides OS system service

interfaces for users and functions as the physical upper boundary of the

TOE.

TOE lower boundary: The TOE runs on hardware and relies on the

hardware to correctly implement functions such as the CPU, interrupt

controller, clock, and MPU. The hardware interface is the lower physical

boundary of the TOE, as it does not rely on any firmware.

Table 1-1 TOE deliverable list

Type Delivery Item Version Method of delivery

Software VOS AutoSAR-OS V3.0.0

iVOS 3.0.186.zip

.zip file 发布平台

https://support.huawei.com/

enterprise/zh/software/index

.html
Software

signature

file

VOS AutoSAR-OS V3.0.0

iVOS 3.0.186.zip.hwp7s

.zip.hwp7s

Product

guidance

VOS AutoSAR-OS V3.0.0

Product Usage Reference

(Chinese version), HUAWEI

VOS 3.0.0 Os 参考手册,

Rev. 01, 2023-04-15

pdf 发布平台

https://support.huawei.com/

enterprise/zh/software/index

.html

VOS AutoSAR-OS V3.0.0

Preparation Procedure,

Rev.1.9, 2023-04-17

pdf

2023-06-30 第 14 页

Type Delivery Item Version Method of delivery

VOS AutoSAR-OS 3.0.0

Operation User Guide,

Rev.1.4, 2023-03-04

pdf

1.4 Terms and abbreviations

1.4.1 Terms

Assets: Entities that the TOE owner places value upon

TSF Data：Data for the operation of the TOE upon which the

enforcement of the SFRs relies

User data: data from the user that does not affect TSF operation

Type 1 interrupt: interrupts that are not managed by the OS and do

not use OS services

Type 2 interrupt: interrupts that are managed by the OS and can

interact with the OS

Interrupt controller: A peripheral that receives interrupt inputs from

other peripherals and sends interrupt signals to the CPU after arbitration

OS object: Logical component in the OS that includes tasks, clocks,

alarms, scheduling tables, resource locks, and spin locks

Control block: describes all information about the required state of

the OS object

Descriptor: A kernel data structure that describes OS objects

Task Control Block (TCB): Type of OS object that describes the

required state information of the task

2023-06-30 第 15 页

Task Descriptor (TDB): Type of OS object that describes the kernel

data structure of the task configuration properties

OS Service: A service provided by the OS, accessed through a system

call or API call

ACCESS_APPLICATION: A security attribute of an OS object that

describes which OS Applications can access this object

1.4.2 Acronyms

Abbreviation Description

EAL Evaluation Assurance Level

OSP Organisational Security Policy

PP Protection Profile

RAM Random Access Memory

ROM Read Only Memory

SAR Security Assurance Requirement

SFP Security Functions Policy

ST Security Target

TOE Target of Evaluation

TSF TOE Security Functions

TSFI TSF Interface

OSA OS Application

APP Application(See OSA)

DB Descriptor Block

CB Control Block

TDB Task Descriptor Block

2023-06-30 第 16 页

TCB Task Control Block

MPU Memory Protection Unit

FIFO First In First Out

ECU Electronic Control Unit

MCU Microcontroller Unit

AutoSAR Automotive Open System Architecture

CP Classic platform

HAL Hardware Abstraction Layer

ISR Interrupt Service Routine

2 Conformance claims

This ST claims conformance to Common Criteria version 3.1

revision 5, which comprises:

 [CC-1] Common Criteria for Information Technology Security

Evaluation, Part 1: Introduction and general model, Version 3.1,

Revision 5, April 2017

 [CC-2] Common Criteria for Information Technology Security

Evaluation, Part 2: Functional security components, Version 3.1,

revision 5, April 2017

 [CC-3] Common Criteria for Information Technology Security

Evaluation, Part 3: Assurance security components, Version 3.1,

revision 5, April 2017

 [CEM] Common Methodology for Information Technology

Security Evaluation, Evaluation methodology, April 2017,

Version 3.1, Revision 5

The conformance claim for [CC-2] and [CC-3] is conformant, and for

the assurance claims, conformance is claimed to the Assurance Level

package of EAL4, augmented by AVA_VAN.5 and ALC_FLR.1.

3 Security Problem Definition

2023-06-30 第 17 页

As an operating system, the TOE needs to ensure that any upper-

layer user is under the kernel's control policy for the kernel's available to

assets. TOE security issues defined in this chapter are mainly damage to

kernel integrity, confidentiality, or availability caused by unauthorized

access to kernel assets. Different TOE asset types face different security

issues. This chapter provides a limited classification of kernel assets and

then analyzes the threats that each asset may face from malicious and

flawed users at the upper layer.

3.1 User

The user of TOE is the OSA task running on the kernel. Threat

agents for all following threats are Untrusted OSA tasks.

3.2 Assets

The TOE aims to protect the following assets:

 OSA code and data

 OS services

 System resources

3.3 Threats

The following describes the threats to the assets that the TOE aims to

prevent, in cooperation with the operational environment of the TOE.

3.3.1 Unauthorized access (T.UNAUTHORIZED_ACCESS)

A user task from an untrusted OSA accesses (e.g. through an OS

service or through a kernel object) an OS object, belonging to another

OSA (i.e., OSA data), which has not authorized the untrusted OSA to

access its objects.

3.3.2 Invalid Memory Access (T.MEMORY_ACCESS)

A user task from an untrusted OSA tries to access the OSA data and

code of another OSA by accessing its memory directly, by accessing

kernel data, or by exceeding its stack space.

3.3.3 System resource monopoly (T.RESOURCE_MONOPLY)

A user task from an untrusted OSA claims all system resources

(such as the CPU) for a long period of time, preventing other OSAs from

2023-06-30 第 18 页

executing.

3.4 Assumptions

The following describes all assumptions on the operational

environment of the TOE.

3.4.1 Hardware platform (A.PLATFORM)

It is assumed that the TOE is integrated into a hardware

environment that provides (at a minimum) the following basic capabilities

to support the secure running of the operating system:

 boot program verification and secure boot of the operating

system,

 a memory protection unit (MPU),

 two independent clocks (system clock and time protection

clock),

 protection against physical attacks, such as probing or

physical manipulation,

 protection against malfunction attacks, where

environmental stress is applied to cause a malfunction, and

 protection against side-channel attacks, where sensitive

information leaks as a result of leakage.

3.4.2 Personnel (A.PERSONNEL)

It is assumed that the developers of AutoSAR CP (which is the end

product that integrates the TOE) are trustworthy and well-trained

personnel, who shall:

 develop Trusted OSAs and integrate the TOE according to

the development guide and prevent malicious tampering

and intentional damage to the TOE,

 configure all OSAs such that the security needs of all user

data are respected (including access rights and task

priorities), and

 ensure that Untrusted OSAs are correctly configured as

untrusted during the integration using the configuration

tool.

2023-06-30 第 19 页

4 Security Objectives

4.1 Security objectives for the TOE

4.1.1 Permission-based Access Control (O.ACCESS_CONTROL)

The TOE shall provide permission-based access restrictions to OS

objects and shall ensure that OSAs cannot access related OS objects

without authorization.

4.1.2 Memory Access Control (O.MEMORY_CONTROL)

The TOE shall use the non-TOE hardware MPU to implement OSA

isolation, in order to protect the storage of security critical code and

ensure that resources such as RAM, ROM, and peripherals that exceed the

OSA limit are not accessed illegally.

4.1.3 Priority (O.PRIORITY)

The TOE shall provide a CPU preemption policy based on task

priorities to ensure that user tasks can use common CPU resources based

on their priorities under the TOE management.

4.1.4 Time protection control (O.TIMING_CONTROL)

The TOE shall provide a time protection mechanism to ensure that

the running time of each user task does not exceed a predetermined time

window.

4.1.5 Stack Monitor (O.STACK_MONITOR)

The TOE shall provide a mechanism for monitoring stack operations.

When a user task is running, the stack usage of the user task is monitored

to prevent overwriting.

4.1.6 Secure state (O.SECURE_STATE)

The TOE shall provide error and exception handling mechanisms to

ensure that the system is in a secure state when an error or exception

occurs, preventing data damage or function abuse.

4.2 Security objectives for the Operational Environment

4.2.1 Hardware platform (OE.PLATFORM)

The hardware environment in which the TOE is integrated shall

2023-06-30 第 20 页

provide the following required capabilities:

 boot program verification and secure boot of the operating

system,

 a memory protection unit (MPU),

 two independent clocks (system clock and time protection

clock),

 protection against physical attacks, such as probing or physical

manipulation,

 protection against malfunction attacks, where environmental

stress is applied to cause a malfunction, and

 protection against side-channel attacks, where sensitive

information leaks as a result of leakage.

4.2.2 Personnel (OE.PERSONNEL)

The developers of AutoSAR (which is the end product that

integrates the TOE) shall be trustworthy and well-trained in the use of the

TOE. They shall:

 develop Trusted OSAs and integrate the TOE according to the

development guide and prevent malicious tampering and

intentional damage to the TOE,

 configure all OSAs such that the security needs of all user data are

respected (including access rights and task priorities), and

 ensure that Untrusted OSAs are correctly configured as untrusted

during the integration using the configuration tool.

5 Security Requirements

5.1 TOE Security Functional Requirements

Table 5-1 lists the security functional requirements involved in this

TOE:

Table 5-1 Security Functional Requirements

SFR Description

2023-06-30 第 21 页

FDP_ACC.1/CAP Subset access control (for OS objects)

FDP_ACC.1/MEM Subset access control (for memory protection)

FDP_ACC.1/STACK Subset access control (user task stack space access

control)

FDP_ACF.1/CAP Security attribute-based access control (for OS objects)

FDP_ACF.1/MEM Security attribute-based access control (for memory

protection)

FDP_ACF.1/STACK Security attribute-based access control (User Task Stack

Access Control)

FIA_ATD.1 User Attribute Definition

FIA_UID.2 User ID before any action

FMT_MSA.1 Security attribute management

FMT_MSA.3 Static attribute initialization

FMT_SMF.1 Management Function Specification

FMT_SMR.1 Security Role

FPT_FLS.1 Failure and Protection Safety Status

FRU_PRS.1 Limited Service Priority

FRU_RSA.1 resource allocation

The following notation is used for operations on the SFRs:

 Assignments and selections are indicated by bold text.

 Iterations are indicated by / followed by a label.

 Refinements are indicated by bold italicized text when text is

added, and bold italicized strikethrough text when text is

removed.

2023-06-30 第 22 页

5.1.1 User Data Protection (FDP)

5.1.1.1 Subset Access Control (FDP_ACC.1/CAP)

FDP_ACC.1.1/CAP The TSF shall enforce the Permission SFP on

 Subjects: User task

 Objects: OS object

 Operations: Invoke through OS service.

5.1.1.2 Subset Access Control (FDP_ACC.1/MEM)

FDP_ACC.1.1/MEM The TSF shall enforce the Memory SFP on

 Subjects: User task

 Objects: Logical memory

 Operation: read, write, execute.

5.1.1.3 Subset Access Control (FDP_ACC.1/STACK)

FDP_ACC.1.1/STACK The TSF shall enforce the Stack SFP on

 Subjects: User task

 Objects: Task stack

 Operations: Use stack (Read and write local variables, save

stack pointers and return addresses, etc.).

5.1.1.4 Security Attribute Based Access Control (FDP_ACF.1/CAP)

FDP_ACF.1.1/CAP The TSF shall enforce the Permission SFP to objects

based on the following:

 User Task: OSA_ID

 OS Object: OSA_ID, ACCESS_APPLICATION, PRIVILEGE

2023-06-30 第 23 页

FDP_ACF.1.2/CAP The TSF shall enforce the following rules to

determine if an operation among controlled subjects and controlled

objects is allowed:

 If the User Task OSA_ID matches the OS Object OSA_ID

access is allowed

 If the User Task OSA_ID is included in the

ACCESS_APPLICATION of the OS Object, access is allowed

 In all other cases, access is denied.

FDP_ACF.1.3/CAP The TSF shall explicitly authorise access of subjects

to objects based on the following additional rules: none

FDP_ACF.1.4/CAP The TSF shall explicitly deny access of subjects to

objects based on the following additional rules: none.

5.1.1.5 Security Attribute Based Access Control (FDP_ACF.1/MEM)

FDP_ACF.1.1/MEM The TSF shall enforce the Memory SFP to objects

based on the following:

 User task: OSA_ID

 Logical memory: MPU response

FDP_ACF.1.2/MEM The TSF shall enforce the following rules to

determine if an operation among controlled subjects and controlled

objects is allowed: access is allowed if and only if the MPU response

indicates that the User Task OSA_ID is allowed to access the object.

FDP_ACF.1.3/MEM The TSF shall explicitly authorise access of subjects

2023-06-30 第 24 页

to objects based on the following additional rules: none.

FDP_ACF.1.4/MEM The TSF shall explicitly deny access of subjects to

objects based on the following additional rules: none.

Application Note: The enforcement of this SFR does not rely on the

correct functioning of the non-TOE MPU. The TOE is required to accept

any response that the MPU gives, be it correct or incorrect.

5.1.1.6 Security Attribute Based Access Control (FDP_ACF.1/STACK)

FDP_ACF.1.1/STACK The TSF shall enforce the Stack SFP to objects

based on the following:

 User task: ID

 Task stack: Owner, used stack, stack address space.

FDP_ACF.1.2/STACK The TSF shall enforce the following rules to

determine if an operation among controlled subjects and controlled

objects is allowed: access is allowed if and only if the User task is the

owner of the Task stack and the used stack would remain within the

stack address space after the operation.

FDP_ACF.1.3/STACK The TSF shall explicitly authorise access of

subjects to objects based on the following additional rules: none.

FDP_ACF.1.4/STACK The TSF shall explicitly deny access of subjects to

objects based on the following additional rules: none.

5.1.2 Identification and Identification (FIA)

2023-06-30 第 25 页

1.1.2.1 User Attribute Definition (FIA_ATD.1)

FIA_ATD.1.1 The TSF shall maintain the following list of security

attributes belonging to individual users: see Table 5-2.

Table 5-2 List of attributes related to security functions

No. Attribute Name Remarks

1 ID Used to uniquely identify an OS object,

maintained by the TOE.

2 OSA_ID OS APPLICATION to which the OS object

belongs.

3 OSA_TRUST Whether the OS application is trusted or

untrusted

4 ACCESS_APPLICATION Attribute of an OS Object with a list of OSAs

that can access it.

5 PRIVILEGE The privilege of the object (kernel or user)

 5.1.2.2 User Identification Before Any Action (FIA_UID.2)

FIA_UID.2.1 The TSF shall require each user to be successfully

identified before allowing any other TSF-mediated actions on behalf of

that user.

Application Note: The ID of an OS object is the unique identifier of the

user identity. It is maintained by the TOE and cannot be modified by

external systems. The TSF identifies the user by obtaining the ID of the

current visitor and obtains related permission information to determine

2023-06-30 第 26 页

whether to allow the current operation.

5.1.3 Security Management (FMT)

5.1.3.1 Management of security attributes (FMT_MSA.1)

FMT_MSA.1.1 The TSF shall enforce the Permission SFP, Memory

SFP, Stack SFP to restrict the ability to see Table 5-3 the security

attributes see Table 5-3 to see Table 5-3.

Table 5-3 List of attributes and their management

Operation Security attributes Authorised role

Modify ID, OSA_ID, OSA_TRUST ,

ACCESS_APPLICATION,

PRIVILEGE, User Task identity,

Task Stack owner and stack

address space

None

Modify MPU response MPU

Modify Task Stack used stack TSF

5.1.3.2 Static attribute initialisation (FMT_MSA.3)

FMT_MSA.3.1 The TSF shall enforce the Permission SFP, Memory

SFP, and Stack SFP to provide fixed default values for security attributes

that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow no one to specify alternative

initial values to override the default values when an object or information

is created.

Application Note: Before compilation, the security attributes of the OS

kernel OS objects are configured and initialized in the OS configuration

tool. The OS kernel cannot create objects during running. Trusted OSAs

and untrusted OSAs cannot change the default values of the object

2023-06-30 第 27 页

security attributes during running.

5.1.3.3 Specification of Management Functions (FMT_SMF.1)

FMT_SMF.1.1 The TSF shall be capable of performing the following

management functions: modify the MPU response.

5.1.3.4 Security roles (FMT_SMR.1)

FMT_SMR.1.1 The TSF shall maintain the roles MPU.

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

5.1.4 Protection of the TSF (FPT)

5.1.4.1 Fail secure (FPT_FLS.1)

FPT_FLS.1.1 The TSF shall preserve a secure state when the following

types of failures occur: parameter errors, insufficient permissions, CPU

resource exhaustion, address errors, and hardware trigger-related

errors (undefined instructions, interrupts, etc.) during system calls.

5.1.5 Resource Utilisation (FRU)

5.1.5.1 Limited priority of service (FRU_PRS.1)

FRU_PRS.1.1 The TSF shall assign a priority to each subject in the TSF.

FRU_PRS.1.2 The TSF shall ensure that each access to CPU resources

shall be mediated on the basis of the subjects assigned priority.

Application Note: The CPU resources are occupied by the CPU resources

based on the priority-based FIFO policy. In normal cases, when user tasks

need to be rescheduled, the TOE scheduling module selects the queue

2023-06-30 第 28 页

head from the waiting queue with the highest priority. The previously

executed task is suspended and placed at the tail of the corresponding

priority queue for the next scheduling.

5.1.5.2 Maximum quotas (FRU_RSA.1)

FRU_RSA.1.1 The TSF shall enforce maximum quotas of the following

resources: CPU resources that subjects can use over a specified period

of time.

Application Note: The operating system kernel security function assigns a

maximum executable time to each subject (user task) in the operating

system kernel security function. If the task runs for longer than this period,

the operating system triggers an exception. The TOE monitors whether

the running time of a task exceeds the maximum execution time based

on the non-TOE hardware clock module, setting a countdown of the

hardware clock module when the task is started; if the countdown is

finished, the time protection interrupt is triggered and the TOE is notified

that the task timed out.

5.2 TOE Security Assurance Requirements

As stated in Section 2, this ST claims conformance to the package

EAL4, augmented with AVA_VAN.5, and ALC_FLR.1, as defined in [CC-3].

They are included here by reference.

6 TOE Summary Specification

2023-06-30 第 29 页

This section describes the security functions implemented by the TOE

and how they ensure the related security requirements are met. As the

operating system kernel, the TOE provides security functions as described

in Section 3.1.

1. SF.OSID: OS Object Identification

2. SF.OSOM: OS Object Management

3. SF.OSAM: OS Application Management

4. SF.OSSP: OS Service Protection

5. SF.MP: Memory Protection

6. SF.SM: Stack Monitoring

7. SF.TS: Task Scheduling

8. SF.TP: Time Protection

9. SF.EH: Error Handling and Exception Handling

6.1 SF.OSID: OS Object Identification

6.1.1 Function summary

Each OS object has a unique OS object identifier (ID). The TOE

maintains its OS objects throughout the life cycle of a task. The OS object

ID of a task or other OS objects cannot be modified.

The TOE does not identify real physical users, but only the tasks that

run on them. An OS object can be either the subject or the object of an

operation.

When an OS object performs a controlled operation on a TOE asset,

the TOE identifies the current user identity based on the OS object ID and

determines whether to allow or reject the operation based on the

permissions related to the OS object maintained by the TOE object.

6.1.2 Corresponding SFRs

This function ensures that the SFR FIA_UID.2 is met, as all subjects

2023-06-30 第 30 页

are identified throughout their whole life cycle. Further, it ensures that the

first item of FIA_ATD.1 is met, assigning IDs to all objects. Finally, these

identifiers are subsequently used by the other security functions to meet

all other SFRs claimed in this ST.

6.2 SF.OSOM: OS Object Management

6.2.1 Function summary

The OS manages the various objects that were defined by the user

and grouped into OSAs. The user can use the OS configuration tool to

generate the initialized global variable configuration array consisting of a

control block <OS_Object>_CB and a data block <OS_Object>_DB. This

array is generated based on the OS object and its attributes as defined by

the user.

Note: an <OS_Object> can correspond to a Task, Counter, or Alarm.

Task_CB and Task_DB are simplified into TCB and TDB in the

implementation.

The OS object ID uniquely identifies the configuration array of each

OS object due to SF.OSID. The OS object configuration array is read-only

to the user. Each object descriptor block (DB) is a constant and cannot be

modified. Each object control block (CB) has only the kernel control

permission.

6.2.2 Corresponding SFRs

This function ensures that part of the fifth item of FIA_ATD.1 and

part of FMT_MSA.1 is met by associating CBs with kernel privileges. By

ensuring that the configuration array is read-only and that DBs cannot be

modified, this function ensures that FMT_MSA.3 is met.

2023-06-30 第 31 页

6.3 SF.OSAM: OS Application Management

6.3.1 Function summary

An OSA is a collection of OS objects as well as some resources (data

segments and code segments), as shown in Figure 6-1. The user can

configure OS objects for each OSA using the configuration tool. These

OSAs use TOE functionality and are subject to the TOE security policies.

The OS objects in the OSA share resources and permissions.

The configuration tool can further be used to mark OSAs as trusted

or untrusted. Trusted OSAs run in the kernel privilege, whereas untrusted

OSAs run in the user privilege. All attributes associated with this (OSA

identity and trust level) cannot be modified once the TOE is operational.

2023-06-30 第 32 页

Figure 6-1 Logical block diagram of the OSA

6.3.2 Corresponding SFRs

This function ensures that the TOE meets the second and third

items of FIA_ATD.1 by defining the OSA_ID and OSA_TRUST, as well as

FMT_MSA.1 for those items, by preventing anyone from modifying them.

6.4 SF.OSSP: OS Service Protection

6.4.1 Function summary

Using the configuration tool, the user can configure the

ACCESS_APPLICATION set of each OS object, which cannot be modified

once the TOE is operational. The ACCESS_APPLICATION set is a list of all

OSAs that are allowed to access this OS object. Therefore, any OS object

of a corresponding OSA in this list is allowed to access the object as the

subject. If the OSA to which the OS object belongs is not in the

ACCESS_APPLICATION set of the object OS object, when the OSA invokes

an OS service to perform an operation on the object, an error is returned

and the operation is denied. As shown in Figure 6-2 below:

2023-06-30 第 33 页

Figure 6-2 Process of accessing OS objects

Additionally, this function prevents untrusted OSAs and their objects

running in the user space to access objects in the kernel space.

6.4.2 Corresponding SFRs

This function ensures that the TOE meets the fourth item of

FIA_ATD.1 by defining the ACCESS_APPLICATION list, as well as the

corresponding FMT_MSA.1, by preventing anyone from modifying it. It

further ensures that the TOE meets FDP_ACC.1/CAP and FDP_ACF.1/CAP

by enforcing the access restrictions based on the security attributes.

6.5 SF.MP: Memory Protection

2023-06-30 第 34 页

6.5.1 Function summary

The TOE sets the upper and lower limits of the non-TOE HW MPU

entity based on different OSA configurations (memory address space)

that the user can configure using the OS configuration tool.

Based on this configuration, the non-TOE HW MPU will ensure that

each OSA can access only the memory address space to which the OSA

belongs, by providing responses whenever an access is requested. Based

on these non-TOE HW MPU responses, the TOE grants or rejects access to

memory areas for subjects.

During the running of the TOE, all data and code segments are

allocated to different sections through compiler instructions. The

compiler allocates each section to a specified location in the memory

address space according to the linked file, as shown in Figure 6-3.

Figure 6-3 Memory allocation process

The untrusted OSA does not have read access to the RAM of the

trusted OSA, and has read access to the kernel RAM（There is no user

2023-06-30 第 35 页

data processed in the kernel RAM).

6.5.2 Corresponding SFRs

This function ensures that the TOE meets FDP_ACC.1/MEM,

FDP_ACF.1/MEM, FMT_MSA.1 (for the MPU response), FMT_SMF.1, and

FMT_SMR.1.

6.6 SF.SM: Stack Monitoring

6.6.1 Function summary

The TOE assigns a task stack to each user task. (private task stack or

OSA shared task stack), where local variables required by user tasks are

stored. If the task stack is too large, memory space may be wasted. If the

task stack is too small, the stack operation may be overrun during task

operation.

The TOE provides this security function of detecting stack overwriting,

including hardware detection and software detection.

The hardware detection is based on SF.MP: When the TOE prepares to

run a user task, the TOE assigns the non-TOE hardware MPU permission

to the task stack. When running a task, the non-TOE hardware MPU

ensures that the stack operation of the task does not cross the bounds.

The software detection: When a user task of the TOE uses the OS

service, the TOE checks the stack pointer and stack top magic word. It

checks whether the stack top pointer is out of bounds and whether the

stack top magic word is changed. If this is the case, it will deny the access

of the task and trigger exception handling.

2023-06-30 第 36 页

6.6.2 Corresponding SFRs

This function ensures that the TOE meets FDP_ACC.1/STACK and

FDP_ACF.1/STACK.

6.7 SF.TS: Task Scheduling

6.7.1 Function summary

The TOE implements a priority-based FIFO scheduling mechanism,

where a larger value indicates a higher priority. Tasks with the same

priority in the ready state are attached to the same kernel task ready-

queue linked list, as shown in Figure 6-4. During scheduling, the

scheduler selects the first node task in the ready list of kernel tasks, allows

the task to occupy the CPU, and waits for the task to be preempted or

actively releases the CPU. A user task can invoke the scheduler in the OS

Service to temporarily abandon the CPU and enter the ready queue again.

Then, the user task is scheduled to the end of the ready task with the

same priority.

Figure 6-4 Kernel scheduling mechanism

The running priority of a task is different from the scheduling

priority. If a task is configured as a non-preemptable task, the scheduling

priority of the task is increased to the highest priority of all tasks after

being scheduled. As a result, other tasks cannot preempt this task.

After a task obtains a resource lock, it automatically increases the

priority of the resource lock to implement priority reversal, preventing

other tasks sharing the resource lock from preempting the resource lock.

When a task occupies the CPU, it can actively abandon the CPU

2023-06-30 第 37 页

usage by means of system calls or interrupts, and trigger re-scheduling.

The presence of a higher-priority task may also interrupt a lower-priority

task that is currently occupying the CPU and trigger re-scheduling.

Each time a task is activated, an sn_node is applied for and inserted

into the ready-queue queue based on the priority. When the priority of

the ready-queue header node task is higher than that of the current task,

preemption occurs.

6.7.2 Corresponding SFRs

This security function ensures that the TOE meets FRU_PRS.1.

6.8 SF.TP: Time Protection

6.8.1 Function summary

The TOE implements a CPU resource allocation mechanism based

on time. The duration of a single task is the duration of CPU usage when

the user is in the running state in the suspend->ready->running-

>suspend or waiting->ready->running->waiting state. If the running-to-

waiting or suspend state is set to 0, the single-time CPU running time is

cleared. If the running state is preempted and enters the ready state, the

single-time CPU running time is not cleared but is suspended. As shown

in Figure 6-5 below:

Figure 6-5 Task Transition

The user can define the maximum duration for a single task in the

2023-06-30 第 38 页

OS configuration tool.

When a user task enters the running state, the TOE starts a

dedicated hardware timer to count the time during which the user task

can be executed. If the user task ends within the specified time, the task is

cleared and the timer is stopped. Otherwise, the timer expires and an

interrupt is triggered. In this case, the TOE enters the exception handling

process.

6.8.2 Corresponding SFRs

This security function ensures that the TOE meets FRU_RSA.1.

6.9 SF.EH: Error Handling and Exception Handling

6.9.1 Function summary

The TOE implements error handling according to [OSEK/VDX]

Section 11.2, which includes returning handling error codes, such as

parameter transfer error and insufficient permissions. In addition, the TOE

triggers ErrorHook, which is an optional user-defined function that can be

used to handle the errors.

The TOE exception handling is implemented according to

[AUTOSAR] Section 7.8. It includes the response to hardware bus

exceptions, memory access exceptions, time protection exceptions, and

stack overwriting exceptions. When an exception occurs, the system

accesses the exception handling module and invokes the ProtectionHook

function. The TOE receives the return value of the ProtectionHook

function. The return value is the exception handling policy. The TOE

handles exceptions based on different handling policies.

 Forcibly Ending a User Task

 Forcibly End User OSA

 Forcibly restart the operating system.

Users can implement the ProtectionHook function, add an exception

handling process (including saving the site and printing logs) to the

ProtectionHook function, and return an exception handling policy.

6.9.2 Corresponding SFRs

This security function ensures that the TOE meets FPT_FLS.1.

2023-06-30 第 39 页

7 Rationales

7.1 Security Objective Rationale

Table 7-1 below illustrates that the Security Objectives completely

address the Security Problem Definition. Furthermore, there is no security

objective without a corresponding threat or assumption, which proves

that every security objective is necessary.

Table 7-1 Mapping security objectives to threats and assumptions

No Threats/Assumptions Security Objective

1

Unauthorized access

(T.UNAUTHORIZED_ACCE

SS)

Permission-based Access Control

(O.ACCESS_CONTROL)

Secure state (O.SECURE_STATE)

2
Invalid Memory Access

(T.MEMORY_ACCESS)

Memory Access Control

(O.MEMORY_CONTROL)

Stack Monitor (O.STACK_MONITOR)

Secure state (O.SECURE_STATE)

Hardware platform (OE.PLATFORM)

3

System resource

monopoly

(T.RESOURCE_MONOPLY

)

O.Priority (O.PRIORITY)

Time protection control

(O.TIMING_CONTROL)

Secure state (O.SECURE_STATE)

Hardware platform (OE.PLATFORM)

4
Hardware platform

(A.PLATFORM)
Hardware platform (OE.PLATFORM)

5
Personnel

(A.PERSONNEL)
Personnel (OE.PERSONNEL)

 Unauthorized access (T.UNAUTHORIZED_ACCESS)

The permission-based access control (O.ACCESS_CONTROL)

ensures that malicious applications or tasks cannot perform operations

on OS objects through the OS Service without authorization. The TOE

maintains a secure state (O.SECURE_STATE) upon access control violations,

2023-06-30 第 40 页

which provides an exception handling mechanism to ensure that the

system is in a secure state when an exception occurs and prevent

attackers from damaging the access control mechanism.

Invalid Memory Access (T.MEMORY_ACCESS)

The memory access control (O.MEMORY_CONTROL) ensures that

malicious applications or tasks cannot access TSF data and user data

without authorization. Therefore, malicious applications or tasks cannot

perform malicious operations on TSF data and user data, allowing them

to damage data integrity or abuse the security functions of the TOE. The

real-time stack monitoring (O.STACK_MONITOR) provides a stack

protection mechanism for tasks to prevent memory data from being

tampered with due to stack overwriting. The TOE maintains a secure state

(O.SECURE_STATE) upon memory access or stack violations, which

provides an exception handling mechanism to ensure that the system is

in a secure state when an exception occurs and prevent attackers from

damaging the access control mechanism. The hardware platform

(OE.PLATFORM) helps mitigate this threat by providing the MPU.

System resource monopoly (T.RESOURCE_MONOPLY)

The priority (O.PRIORITY) policy ensures that malicious applications

or tasks cannot occupy CPU resources when higher priority applications

need to run, by preempting the lower priority tasks. Malicious

applications and tasks cannot prevent tasks running at the same priority

from using system resources, as they will be limited in their running time

by the configurable time protection control (O.TIMING_CONTROL). The

TOE maintains a secure state (O.SECURE_STATE) upon time limit violations,

which provides an exception handling mechanism to ensure that the task

time-out is properly handled. The hardware platform (OE.PLATFORM)

helps mitigate this threat by providing the timer.

Hardware platform (A.PLATFORM)

This assumption for platform (security) services is directly met by

the corresponding objective for the environment regarding the hardware

platform (OE.PLATFORM).

Personnel (A.PERSONNEL)

2023-06-30 第 41 页

This assumption is directly met by the corresponding objective for the

environment regarding the personnel (OE.PERSONNEL).

7.2 Security Requirements Rationale

7.2.1 SFR tracing

Table 7-2 Security Functional Requirements

No. SFR Security Objective

1 Subset Access Control

(FDP_ACC.1/CAP)

O.ACCESS_CONTROL

2 Subset Access Control

(FDP_ACC.1/MEM)

O.MEMORY_CONTROL

3 Subset Access Control

(FDP_ACC.1/STACK)

O.STACK_MONITOR

4 Security Attribute Based Access

Control (FDP_ACF.1/CAP)

O.ACCESS_CONTROL

5 Security Attribute Based Access

Control (FDP_ACF.1/MEM)

O.MEMORY_CONTROL

6 Security Attribute Based Access

Control (FDP_ACF.1/STACK)

O.STACK_MONITOR

7 User Attribute Definition (FIA_ATD.1) O.ACCESS_CONTROL

O.MEMORY_CONTROL

O.STACK_MONITOR

8 User Identification Before Any Action

(FIA_UID.2)

O.ACCESS_CONTROL

O.MEMORY_CONTROL

O.STACK_MONITOR

9 Management of security attributes

(FMT_MSA.1)

O.ACCESS_CONTROL

O.MEMORY_CONTROL

O.STACK_MONITOR

10 Static attribute initialisation

(FMT_MSA.3)

O.ACCESS_CONTROL

O.MEMORY_CONTROL

O.STACK_MONITOR

11 Specification of Management

Functions (FMT_SMF.1)

O.MEMORY_CONTROL

12 Security roles (FMT_SMR.1) O.MEMORY_CONTROL

13 Fail secure (FPT_FLS.1) O.SECURE_STATE

14 Limited priority of service

(FRU_PRS.1)

O.PRIORITY

2023-06-30 第 42 页

15 Maximum quotas (FRU_RSA.1) O.TIMING_CONTROL

Permission-based Access Control (O.ACCESS_CONTROL)

This security objective is met by the SFRs FDP_ACC.1/CAP,

FDP_ACF.1/CAP, FMT_MSA.3, FMT_MSA.1, FIA_ATD.1, and FIA_UID.2, that

together define the permission-based access control policy and require

that the security attributes related to this policy cannot be managed by

subjects during runtime of the TOE.

Memory Access Control (O.MEMORY_CONTROL)

This security objective is met by the SFRs FDP_ACC.1/MEM,

FDP_ACF.1/MEM, FMT_MSA.3, FMT_MSA.1, FMT_SMF.1, FMT_SMR.1,

FIA_ATD.1, and FIA_UID.2, that together define the memory access control

policy and require that the security attributes related to this policy cannot

be managed by subjects during runtime of the TOE, with the exception of

the MPU response that can be managed by the non-TOE hardware MPU

subject.

Priority (O.PRIORITY)

This security objective is directly met by the SFR FRU_PRS.1, which

requires the TOE to mediate access to the CPU resources based on

priorities for each subject.

Time protection control (O.TIMING_CONTROL)

This security objective is directly met by the SFR FRU_RSA.1, which

requires the TOE to limit access to the CPU resources based on the

external non-TOE hardware timer for each subject.

Stack Monitor (O.STACK_MONITOR)

This security objective is met by the SFRs FDP_ACC.1/STACK,

FDP_ACF.1/STACK, FMT_MSA.3, FMT_MSA.1, FIA_ATD.1, and FIA_UID.2,

that together define the memory access control policy and require that

the security attributes related to this policy cannot be managed by

subjects during runtime of the TOE.

Security (O.SECURE_STATE)

This security objective is directly met by the SFR FPT_FLS.1, which

requires the TOE to maintain a secure state when an error or exception

occurs.

7.2.2 Dependency justification

2023-06-30 第 43 页

All dependencies for security requirements are met, which are

illustrated in Table 7-3. The set of SFRs including FMT_MSA.1, FMT_MSA.3,

FMT_SMF.1, FMT_SMR.1, FIA_UID.2, and all iterations of FDP_ACC.1 and

FDP_ACF.1 is a self-consistent set that satisfies all dependencies of its

members. The SFRs FIA_ATD.1, FPT_FLS.1, FRU_PRS.1, and FRU_RSA.1 have

no dependencies.

Table 7-3 Security Functional Requirements dependencies

No. SFR Dependencies Met by

1 FDP_ACC.1/CAP FDP_ACF.1 FDP_ACF.1/CAP

2 FDP_ACC.1/MEM FDP_ACF.1 FDP_ACF.1/ MEM

3 FDP_ACC.1/STACK FDP_ACF.1 FDP_ACF.1/ STACK

4 FDP_ACF.1/CAP FDP_ACC.1 and

FMT_MSA.3

FDP_ACC.1 and FMT_MSA.3

5 FDP_ACF.1/MEM FDP_ACC.1 and

FMT_MSA.3

FDP_ACC.1 and FMT_MSA.3

6 FDP_ACF.1/STACK FDP_ACC.1 and

FMT_MSA.3

FDP_ACC.1 and FMT_MSA.3

7 FIA_ATD.1 No dependencies Not applicable

8 FIA_UID.2 No dependencies Not applicable

9 FMT_MSA.1 FDP_ACC.1 or FDP_IFC.1,

FMT_SMR.1 and

FMT_SMF.1

FDP_ACC.1, FMT_SMF.1 and

FMT_SMR.1

10 FMT_MSA.3 FMT_MSA.1 and

FMT_SMR.1

FMT_MSA.1 and FMT_SMR.1

11 FMT_SMF.1 No dependencies Not applicable

12 FMT_SMR.1 FIA_UID.1 FIA_UID.2

13 FPT_FLS.1 No dependencies Not applicable

14 FRU_PRS.1 No dependencies Not applicable

15 FRU_RSA.1 No dependencies Not applicable

With regards to the assurance requirements, the package EAL4 meets

all dependencies by design, the dependencies of the augmentation

AVA_VAN.5 are all contained in EAL4, whereas the augmentation

ALC_FLR.1 has no dependencies.

2023-06-30 第 44 页

7.2.3 Chosen SARs

The package EAL4 is chosen to gain maximum assurance from

positive security engineering based on good commercial development

practices. The augmentation of AVA_VAN.5 is chosen to extend the

required security level to the highest covered by the standard. The

augmentation of ALC_FLR.1 is chosen to show that the developer

implements security flaw remediation for the TOE and provides the

associated information to TOE users.

8 References

[AUTOSAR] Specification of Operating System, AUTOSAR CP, Release

4.4.0, 2018-10-31

[OSEK/VDX] OSEK/VDX, Operating System, Version 2.2.3, 2005-02-17

