This document contains information to fulfill the requirements of the Common Criteria component ASE (Security Target) for the Evaluation of the JCOP product developed and provided by NXP Semiconductors, Business Unit Security & Connectivity, according to the Common Criteria for Information Technology Security Evaluation Version 3.1 at EAL5 augmented.
<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2019-04-09</td>
<td>Release version of ST-Lite</td>
</tr>
<tr>
<td>1.1</td>
<td>2018-04-18</td>
<td>Address comments from EM3</td>
</tr>
<tr>
<td>2.0</td>
<td>2018-06-11</td>
<td>Maintenance version updated FCS_RNG.1 SFR, removed FCS_CKM.2 and FCS_CKM.3 to conform with PP0099</td>
</tr>
<tr>
<td>2.1</td>
<td>2018-06-17</td>
<td>Update UGM reference</td>
</tr>
<tr>
<td>2.2</td>
<td>2018-08-30</td>
<td>Review comments</td>
</tr>
<tr>
<td>2.3</td>
<td>2019-12-10</td>
<td>Update H/W ST reference to include GF1 Fab transfer, update TOE reference</td>
</tr>
<tr>
<td>2.4</td>
<td>2021-06-17</td>
<td>Update H/W ST reference to include SMIC Fab transfer</td>
</tr>
<tr>
<td>2.5</td>
<td>2021-08-16</td>
<td>Update H/W Certification ID</td>
</tr>
<tr>
<td>2.6</td>
<td>2022-10-04</td>
<td>Update UGM references in Bibliography</td>
</tr>
<tr>
<td>2.7</td>
<td>2023-03-17</td>
<td>Update UGM reference in Bibliography</td>
</tr>
</tbody>
</table>
1 ST Introduction (ASE_INT)

1.1 ST Reference and TOE Reference

<table>
<thead>
<tr>
<th>Title</th>
<th>NXP JCOP 5.1 on SN100.C48 Secure Element Security Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST Version</td>
<td>Revision 2.6</td>
</tr>
<tr>
<td>TOE Version</td>
<td>R1.00.1</td>
</tr>
<tr>
<td>Date</td>
<td>2022-10-04</td>
</tr>
<tr>
<td>Product Type</td>
<td>Java Card</td>
</tr>
<tr>
<td>TOE name</td>
<td>NXP JCOP 5.1 on SN100.C48 Secure Element</td>
</tr>
<tr>
<td>Certification ID</td>
<td>NSCIB-CC-2200049-01, previously certified as NSCIB-CC-221699</td>
</tr>
</tbody>
</table>

Tab. 1.1: ST Reference and TOE reference

1.2 TOE Overview

The TOE consists of the embedded Secure Element, also called Micro-Controller, and a software stack which is stored on the Secure Element and which can be executed by the Secure Element. The software stack can be further split into the following components:

- Firmware for booting and low level functionality of the Secure Element, called MC FW - included in the hardware certification.
- Software for implementing cryptographic operations on the Secure Element, called Security Software - included in the hardware certification.
- Software to update JCOP5.1 OS or UpdaterOS, called OS Update Component.
- Software for implementing JCOP5.1 OS:
 - Software that implements low level functionality, called Native OS.
 - Software that implements the Java Card Virtual Machine [3] and a Java Card Runtime Environment [4], called JCVM and JCRE.
 - Software that implements the Java Card Application Programming Interface [2], called JCAPI.
 - Software for implementing content management according to GlobalPlatform [26], called GP.
 - Software that implements a proprietary programming interface, called Extension API.
 - Software that handles personalization and configuration, called Config Applet.
– Software that implements the API and functionality for MiFare - no security claims are made on MiFare.
– Software that implements the API and functionality for Felica - no security claims are made on Felica.
– Software to run third party native code, provided as a .hex file (Secure Box Native Lib), called Secure Box.

- Software for implementing third party functionality, called Native Applications.

The TOE is also referred to as JCOP5.1. Whereas the JCOP5.1 OS consists of the software stack without the Security Software and the MC FW. The TOE communicates with an integrated NFC controller via the System Mailbox. All communications must support HCI protocol. The integrated NFC controller is not in scope of this evaluation, however provides up to 4 gates for external users to communicate with the TOE supporting Card Emulation Mode Type A, Type B and Type F as well as a wired Interface using APDUCard Gate.

The TOE elements are depicted in Figure 1.1 and are described in more detail in Section 1.3.

![Components of the JCOP 5.1 eSE TOE](image)

Fig. 1.1: Components of the JCOP 5.1 eSE TOE

Figure 1.1 also shows applets and the Secure Box Native Library. The applets are small Java programs which can be executed by the TOE, but are not part of the TOE. The Config Applet has special privileges and is used to personalise and configure the TOE. The Secure Box Native Library provides native functions via the Secure Box.
Customer applets and the Secure Box Native Library are not part of the TOE. The Config Applet is part of the TOE.

1.2.1 TOE Type

The TOE of the Security Target is NXP JCOP 5.1 eSE on a certified NXP SN100 Secure Element and Crypto Library. The TOE is a Java Card with GP functionality. It can be used to load, install, instantiate and execute off-card verified Java Card applets. The eSE domain is externally connected via SPI or by the System mailbox connected to the embedded NFC controller supporting Type A, B & F contactless communications. The NFC controller and system mailbox are not within the scope of the evaluation. JCOP5.1 is uniquely deployed on the C48 variant of the SN100 Secure Element, therefore all reference to the SN100 Secure element in this document implies the C48 variant. This may also be referred to as SN100.C48.

![Fig. 1.2: JCOP 5.1 on SN100](image)

Products based on JCOP 5.1 may be configured to instantiate a separate domain dedicated to eUICC functionality, logically separated from the eSE domain internally and by the available communication Interfaces. The eUICC domain is not in scope of this evaluation. The TOE boundary is highlighted in Figure 1.2.
1.2.2 Usage and Major Security Features of the TOE

The usage of the TOE is focused on security critical applications in small form factors. One main usage scenario is the use in mobile phones, which can use the TOE to enable mobile payment or mobile ticketing with the phone based on the security of the TOE.

The TOE provides a variety of security features. The hardware of the Micro Controller already protects against physical attacks by applying various sensors to detect manipulations and by processing data in ways which protect against leakage of data by side channel analysis. With the software stack the TOE provides many cryptographic primitives for encryption, decryption, signature generation, signature verification, key generation, secure management of PINs and secure storage of confidential data (e.g. keys, PINs). Also the software stack implements several countermeasures to protect the TOE against attacks.

The TOE includes the following features:

- **Cryptographic algorithms and functionality:**
 1. 3DES for en-/decryption (CBC and ECB) and MAC generation and verification (2-key 3DES, 3-key 3DES, Retail-MAC, CMAC and CBC-MAC).
 2. AES (Advanced Encryption Standard) for en-/decryption (GCM, CBC and ECB) and MAC generation and verification (CMAC, CBC-MAC).
 3. RSA and RSA CRT for en-/decryption and signature generation and verification.
 4. RSA and RSA CRT key generation.
 5. SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 hash algorithm.
 7. HMAC
 8. ECC over GF(p) for signature generation and verification (ECDSA).
 9. ECC over GF(p) key generation for key agreement.
 10. Random number generation according to class DRG.4 of AIS 20 [13]

- **Java Card 3.0.5 functionality:**
 1. Executing Java Card bytecodes.
 3. Enforcing access rules between applets and the JCRE.
 4. Mapping of Java method calls to native implementations of e.g. cryptographic operation.
 5. Garbage Collection fully implemented with complete memory reclamation including compactification.
 6. Support for Extended Length APDUs.
 7. Persistent Memory Management and Transaction Mechanism.
• GlobalPlatform 2.3 functionality including Amendments A,B,C,D,E,F,H and I and is compliant with the Common Implementation Configuration.

1. Loading of Java Card packages.
2. Instantiating applet instances.
3. Java package deletion.
4. Java applet instance deletion.
7. Installation of keys.
8. Verification of signatures of signed applets.
9. CVM Management (Global PIN) fully implemented.
10. Secure Channel Protocol is supported.
11. Delegated Management, DAP (RSA 1024 and ECC 256).
12. Compliance to Secure Element configuration.

• NXP Proprietary Functionality

1. Secure Box: Enables the TOE to run third party native code (Secure Box Native Lib) on the Micro Controller.
2. Felica functionality accessible via Applets using the Felica API. No security functionality is claimed for this functionality.
3. Config Applet: JCOP5.1 OS includes a Config Applet that can be used for configuration of the TOE.
4. OS Update Component: Proprietary functionality that can update JCOP5.1 OS or UpdaterOS.
5. Restricted Mode: In Restricted Mode only very limited functionality of the TOE is available such as, e.g.: reading logging information or resetting the Attack Counter.
6. Error Detection Code (EDC) API.

1.2.3 Required non-TOE Hardware/Software/Firmware

Three groups of users shall be distinguished here.

1. The first group is the end-users group, which uses the TOE with one or more loaded applets in the final form factor as an embedded Secure Element. These users only require a communication device to be able to communicate with the TOE. The eSE domain of the TOE communicates via the Secure Mail Box, which is connected to the Integrated NFC controller of the SN100 and also supports an SPI interface with the NFC controller. The NFC controller facilitates contactless or wired interfaces supporting:
1.3 TOE Description

1.3.1 TOE Components and Composite Certification

The certification of this TOE is a composite certification. This means that for the certification of this TOE other certifications of components which are part of this TOE are re-used. In the following sections more detailed descriptions of the components of Figure 1.1 are provided. In the description it is also made clear whether a component is covered by a previous certification or whether it is covered in the certification of this TOE.

1.3.1.1 Micro Controller

The SN100 is a secure element from NXP based on ARM architecture. The Micro Controller includes a co-processor for symmetric cipher, supporting AES and DES operations, and a co-processor for asymmetric algorithms. It contains volatile (RAM) memory and non-volatile Flash memory. The product design is based on smart card technology and is interchangeably referred to as a secure element or smart card product.

A specific version, identified as C48, of SN100 is used uniquely for JCOP 5.1 products. In this document, SN100 always implies the C48 variant. SN100.C48 is also a commonly used notation.

The Micro Controller has been certified and the results are re-used for this certification. The exact reference to the previous certification is given in the Table 1.2:

<table>
<thead>
<tr>
<th>Hardware Commercial Name</th>
<th>NXP SN100 Series Secure Element with Crypto Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certified HW Version</td>
<td>SN100_SE B2.1 C48</td>
</tr>
<tr>
<td>Certification ID</td>
<td>NSCIB-22-174263</td>
</tr>
<tr>
<td>Shortened Identifier</td>
<td>SN100.C48</td>
</tr>
<tr>
<td>Security Target Reference</td>
<td>[34]</td>
</tr>
</tbody>
</table>

Tab. 1.2: Reference to Certified Micro Controller
1.3.1.2 IC Dedicated Software

1.3.1.2.1 MC FW (Micro Controller Firmware)

The Micro Controller Firmware is used for testing of the Micro Controller at production, for booting of the Micro Controller after power-up or after reset, for configuration of communication devices. The MC FW has been certified in a previous certification. It has been certified together with the Micro Controller and the same references ([34]) as given for the Micro Controller also apply for the MC FW.

1.3.1.2.2 Security Software

The Security Software is used by the IC Embedded Software and provides cryptographic functionality (CryptoLib) but also an interface for memory erasing and programming (Flash Services). For SN100, the Crypto Lib is included in the hardware certification [34].

1.3.1.3 IC Embedded Software

1.3.1.3.1 JCOP5.1 OS

JCOP5.1 OS consists of Native OS, JCVM, JCRE, GP framework, JCAPI, Extension API, Secure Box, . JCVM, JCRE, JCAPI and GP framework are implemented according to the Java Card Specification and GlobalPlatform version listed below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Security Claimed</th>
<th>eSE domain</th>
</tr>
</thead>
</table>

Tab. 1.3: Java Card Specification Version

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Security Claimed</th>
<th>eSE domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP Framework</td>
<td>Version 2.3 [26]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Amendment A, Confidential Card Content Management</td>
<td>Version 1.1 [20]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Amendment B, Remote Application Management over HTTP</td>
<td>Version 1.1.3 [22]</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Amendment C, Contactless Services</td>
<td>Version 1.1 [19]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Amendment E, Security Upgrade for CCM</td>
<td>Version 1.0.1 [23]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Amendment H, Executable Load File Upgrade</td>
<td>Version 1.1 [27]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Amendment I, Secure Element Management Service (SEMS)</td>
<td>Version 1.0 [28]</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Common Implementation Configuration</td>
<td>Version 2.0 [21]</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Tab. 1.4: GlobalPlatform and Amendments
JCOP5.1 OS components version can be identified by using the GET PLATFORM IDENTIFIER command (see UGM [33]). This command returns the card identification data, which includes the Hardware Type, JCOP Version, Build Number, Mask ID, a Patch ID and Non-Volatile Memory Size. The Platform ID is a data string that allows to identify the JCOP5.1 OS component. Table 1.7 in section 1.3.3 lists all possible values for the Platform ID that are valid for this TOE.

1.3.1.3.2 Native Applications

The Native Applications extend the available cryptographic algorithms for the Security Software. These Native Applications are proprietary implementations (e.g. Felica) which make use of the Security Software’s security mechanisms. Native Applications are provided to JCOP5.1 OS via the Security Software. No security functionality claimed for Native Applications, it is an extension to the Crypto Lib.

1.3.1.3.3 OS Update Component

The OS Update Component can update JCOP5.1 OS and UpdaterOS and contains two main components:

- OsSelector (no security claimed): After a hardware reset it provides the functionality to either boot UpdaterOS or JCOP5.1 OS. OsSelector also ensures that
 - only one OS is active (running) at a time.
 - at any time, at least one OS can be booted.
 - an invalid OS (e.g. partly flashed) can never be booted.

- UpdaterOS:
 - it handles APDUs to write a new OS (either JCOP5.1 OS or UpdaterOS) to flash.
 - it verifies the integrity of the new OS before updating.
 - it decrypts the new OS before updating.
 - it checks if the new OS can be authenticated and checks if the update can be authorized.
 - it ensures that the activation and setting of the information that identifies the new OS is done atomically.
 - if the update fails the system stays in a secure state.

The UpdaterOS is a standalone operating system that can only be active when JCOP5.1 OS is not active. Besides the capability to update JCOP5.1 OS, UpdaterOS is also capable to update itself. The UpdaterOS version can be queried by using a SELECT OS Update AID Command (see UGM [33]). UpdaterOS shares parts of the Native OS with JCOP5.1 OS, e.g.: communication interface, wrapper to Security Software (Flash Services and CryptoLib).
1.3.2 TOE Life Cycle

The life cycle for this Java Card is based on the general smart card life cycle defined in the Java Card Protection Profile - Open Configuration [5], see Figure 1.3.
Fig. 1.3: TOE Life Cycle within Product Life Cycle
<table>
<thead>
<tr>
<th>Phase</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Security IC Embedded Software Development | The IC Embedded Software Developer is in charge of

 - smartcard embedded software development including the development of Java Card applets and
 - specification of IC pre-personalization requirements, though the actual data for IC pre-personalization comes from phase 4, 5, or 6. |
| 2 | Security IC Development | The IC Developer

 - designs the IC,
 - develops IC Dedicated Software,
 - provides information, software or tools to the IC Embedded Software Developer, and
 - receives the embedded software from the developer, through trusted delivery and verification procedures.

 From the IC design, IC Dedicated Software and Smartcard Embedded Software, the IC Developer

 - constructs the smartcard IC database, necessary for the IC photomask fabrication. |
| 3 | Security IC Manufacturing | The IC Manufacturer is responsible for

 - producing the IC through three main steps: IC manufacturing, IC testing, and IC pre-personalization.

 The IC Mask Manufacturer

 - generates the masks for the IC manufacturing based upon an output from the smarcard IC database. Configuration items may be changed/deleted. |
| 4 | Security IC Packaging | The IC Packaging Manufacturer is responsible for

 - IC packaging and testing. |
| Phase | Name | Description |
|-------|-----------------------------|-- Worst |
| 5 | Composite Product Integration | The Composite Product Manufacturer is responsible for the smartcard product finishing process. |
| 6 | Personalization | The Personalizer is responsible for
 - smartcard (including applet) personalization and final tests. User Applets may be loaded onto the chip at the personalization process and configuration items may be changed/deleted. The Config Applet can be used to set Configuration Items. |
| 7 | Operational Usage | The Consumer (e.g. Original Equipment Manufacturer) of Composite Product is responsible for
 - smartcard product delivery to the smartcard end-user, and the end of life process.
 - applets may be loaded onto the chip.
 - triggering an OS update.
 - Secure Box: running third party native code.
 - Config Applet: changing Config Items.
 - perform card content management according to GlobalPlatform and Amendments specifications. |

Tab. 1.5: Life-cycle

The evaluation process is limited to phases 1 to 5. User Applet development is outside the scope of this evaluation. Applets can be loaded into Flash memory. Applet loading into Flash memory can be done in phases 3, 4, 5, and 6. Applet loading in phase 7 is also allowed. This means post-issuance loading of applets can be done for a certified TOE. The certification is only valid for platforms that return the Platform Identifier as stated in Table 1.6. The delivery process from NXP to their customers (to phase 4 or phase 5 of the life cycle) guarantees, that the customer is aware of the exact versions of the different parts of the TOE as outlined above. TOE documentation is delivered in electronic form (encrypted according to defined mailing procedures).

Note: Phases 1 to 3 are under the TOE developer scope of control. Therefore, the objectives for the environment related to phase 1 to 3 are covered by Assurance measures, which are materialized by documents, process and procedures evaluated through the TOE evaluation process. During phases 4 to 7 the TOE is no more under the
developer control. In this environment, the TOE protects itself with its own Security functions. But some additional usage recommendation must also be followed in order to ensure that the TOE is correctly and securely handled, and that shall be not damaged or comprised. This ST assumes (A.USE_DIAG, A.USE_KEYS) that users handle securely the TOE and related Objectives for the environment are defined (OE.USE_DIAG, OE.USE_KEYS).

1.3.3 TOE Identification

The delivery comprises the following items:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>NXP Secure Element with Crypto Library SN100.C48 and including software (JCOP5.1 OS, native applications and OS Update Component) that is identified by Platform ID.</td>
<td>see [34] and Table 1.7</td>
</tr>
<tr>
<td>Document</td>
<td>JCOP 5.1 R1.00.1 UGM</td>
<td>[33] (pdf)</td>
</tr>
<tr>
<td>Document</td>
<td>JCOP 5.1 R1.00.1 SEMS UGM</td>
<td>[32] (pdf)</td>
</tr>
</tbody>
</table>

Tab. 1.6: Delivery Items

The TOE can be identified by the Platform ID. See Table 1.7. The Platform ID can be obtained by using the GET PLATFORM IDENTIFIER command (see UGM [33]).

<table>
<thead>
<tr>
<th>OS</th>
<th>Product Name</th>
<th>Commercial Name</th>
<th>Platform ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCOP5.1 OS</td>
<td>JCOP 5.1</td>
<td>J5U2M001F3560600</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.7: Product Identification

The Platform ID has the following form:

Jabccxxxxxyyzz

The "J" is constant, the other letters are variables. For a detailed description of these variables, please see Table 1.8.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
<th>Value</th>
<th>Parameter Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Hardware Type</td>
<td>5</td>
<td>NFC hardware</td>
</tr>
<tr>
<td>b</td>
<td>JCOP OS Version</td>
<td>U</td>
<td>JCOP5.1</td>
</tr>
<tr>
<td>ccc</td>
<td>Non-Volatile Memory Size</td>
<td>2M0</td>
<td>2.0MB</td>
</tr>
</tbody>
</table>
Additionally to the Platform Identifier the TOE can also be identified by its sequence number:

1. If UpdaterOS is active then the "SELECT OS Update AID" command will return the Current Sequence Number of UpdaterOS and the Reference Sequence Number.

2. If JCOP5.1 OS is active then the "Get OS Info" command will return the Current Sequence Number of JCOP5.1 OS (Final Sequence Number).

1.3.4 TOE Delivery

The TOE is shipped to the customer by NXP as embedded firmware on the certified Hardware Platform. The available documentation can be downloaded by customers in PDF format directly from the NXP DocStore.

1.3.5 Evaluated Package Types

The only commercially available package type is "Wafer Level Chip Scale Package" (WLCSP). This package is a thin fine-pitch ball grid array package. All (enabled) pins of the TOE are externally accessible. Any additional security provided by the package is ignored for the security of the TOE and therefore the package type is not security relevant.
2 Conformance Claims (ASE_CCL)

This chapter is divided into the following sections: "CC Conformance Claim", "Package Claim", "PP Claim", and "Conformance Claim Rationale".

2.1 CC Conformance Claim

This Security Target claims to be conformant to version 3.1 of Common Criteria for Information Technology Security Evaluation according to

The following methodology will be used for the evaluation:

This Security Target claims to be CC Part 2 extended and CC Part 3 conformant. The extended Security Functional Requirements are defined in Chapter 6.

2.2 Package Claim

This Security Target claims conformance to the assurance package EAL5 augmented. The augmentation to EAL5 is AVA_VAN.5 “Advanced methodical vulnerability analysis”, ALC_DVS.2 “Sufficiency of security measures”, ASE_TSS.2 “TOE summary specification with architectural design summary”, and ALC_FLR.1 “Basic flaw remediation”.

2.3 PP Claim

The Security Target claims demonstrable conformance to the Java Card Protection Profile - Open Configuration, Version 3.0.5, Certified by BSI, the German Certification Body. [5]. The Java Card Protection Profile makes the use of Java Card RMI and "Management of External Memory (EXT-MEM)". The TOE does not support Java Card RMI nor "Extended Memory (EXT-MEM)". This ST is more restrictive than the PP [5] which chapter 2.4 provides a rationale for.
2.4 Conformance Claim Rationale

2.4.1 TOE Type

The TOE type as stated in Section 1.2 of this ST corresponds to the TOE type of the PP as stated in Section 1.2 of [5] namely a Java Card platform, implementing the Java Card Specification Version 3.0.5 [3, 4, 2]. This Security Target claims conformance to the following packages of security requirements out of those for Cryptographic Services defined in the Smartcard IC Platform Protection profile [10].

- Package "TDES"
- Package "AES"

2.4.2 SPD Statement

The SPD statement that is presented in Chapter 4 includes the threats as presented in the PP [5], but also includes additional threats. These threats are:

- T.RND
- T.CONFID-UPDATE-IMAGE.LOAD
- T.INTEG-UPDATE-IMAGE.LOAD
- T.UNAUTH-LOAD-UPDATE-IMAGE
- T.INTERRUPT-OSU
- T.CONFIG
- T.COM_EXPLOIT
- T.LIFE_CYCLE
- T.UNAUTHORIZED_CARD_MNGT
- T.INTEG-APPLI-DATA[REFINED]
- T.SEC_BOX_BORDER
- T.ATTACK-COUNTER

The threat T.RND is taken from the Security IC PP [10]. The threats T.CONFID-UPDATE-IMAGE.LOAD, T.INTEG-UPDATE-IMAGE.LOAD, T.UNAUTH-LOAD-UPDATE-IMAGE and T.INTERRUPT-OSU are included for the OS Update which is additional functionality the PP allows. The threat T.CONFIG is an additional threat to cover unauthorized modifications and read access of the configuration area in the TOE. It is an addition to the threats defined in the PP [5]. The threat T.ATTACK-COUNTER is included
for the Restricted Mode which is additional functionality the PP allows. The threat T.COM_EXPLOIT is included
to cover communication channels attacks and it is an addition to the threats in the PP [5].
The threat T.LIFE_CYCLE is included to cover content management attacks and it is an addition to the threats in
the PP [5].
The threat T.UNAUTHORIZED_CARD_MNGT refines the threats T.INSTALL and T.DELETION from the PP [5].
The threat T.INTEG-APPLI-DATA[REFINED] refines the threat T.INTEG-APPLI-DATA in the PP [5].
The threat T.SEC_BOX_BORDER is included for Secure Box which is additional functionality the PP allows.
Note that the threat T.EXE-CODE-REMOTE is not included, since the TOE does not support Java Card RMI. The
The SPD statement presented in Chapter 4, copies the OSP from the PP [5], and adds the following additional
OSPs:

- OSP.PROCESS-TOE
- OSP.KEY-CHANGE
- OSP.SECURITY-DOMAINS
- OSP.SECURE-BOX

The OSP OSP.PROCESS-TOE is introduced for the pre-personalisation feature of the TOE and is an addition to
the OSPs in PP [5]. The OSP OSP.KEY-CHANGE is introduced for the SD feature of the TOE and is an addition to
the OSPs in PP [5]. The OSP OSP.SECURITY-DOMAINS is introduced for the SD feature of the TOE and is an
addition to the OSPs in PP [5].
The OSP.SECURE-BOX is introduced to allow execution of third party native code and is an addition to the OSPs
in PP [5].
The SPD statement includes two of the three assumptions from the PP [5]. The assumption A.Deletion is
excluded. The Card Manager is part of the TOE and therefore the assumption is no longer relevant. Leaving
out the assumption, makes the SPD of this ST more restrictive than the SPD in the PP [5]. As the Card Manager
is part of the TOE, it is ensuring that the deletion of applets through the Card Manager is secure, instead of
assuming that it is handled by the Card Manager in the environment of the TOE.
Besides the assumptions from the PP [5], five additional assumptions are added:

- A.PROCESS-SEC-IC
- A.USE_DIAG
- A.USE_KEYS
- A.APPS-PROVIDER
- A.VERIFICATION-AUTHORITY
The assumption \texttt{A.PROCESS-SEC-IC} is taken from the underlying certified Micro Controller \cite{34}, which is compliant to the Security IC PP \cite{10}.

The assumptions \texttt{A.USE_DIAG} and \texttt{A.USE_KEYS} are included because the Card Manager is part of the TOE and no longer part of the environment.

The assumptions \texttt{A.APPS-PROVIDER} and \texttt{A.VERIFICATION-AUTHORITY} are added because Security Domains from the GlobalPlatform Specification are introduced. All the applets and packages are signed by the APSD and the correctness is verified on the TOE by VASD before the package or applet is installed or loaded. \texttt{A.APPS-PROVIDER} and \texttt{A.VERIFICATION-AUTHORITY} are additions to PP \cite{5} for card content management environment.

2.4.3 Security Objectives Statement

The statement of security objectives in the ST presented in Chapter 5 includes all security objectives as presented in the PP \cite{5}, but also includes a number of additional security objectives. These security objectives are:

- \texttt{OT.SEC_BOX_FW}
- \texttt{OT.IDENTIFICATION}
- \texttt{OT.RND}
- \texttt{OT.CONFID-UPDATE-IMAGE.LOAD}
- \texttt{OT.AUTH-LOAD-UPDATE-IMAGE}
- \texttt{OT.SECURE_LOAD_ACODE}
- \texttt{OT.SECURE_AC_ACTIVATION}
- \texttt{OT.TOE_IDENTIFICATION}
- \texttt{OT.CARD-CONFIGURATION}
- \texttt{OT.ATTACK-COUNTER}
- \texttt{OT.RESTRICTED-MODE}
- \texttt{OT.DOMAIN-RIGHTS}
- \texttt{OT.APPLI-AUTH}
- \texttt{OT.COMM_AUTH}
- \texttt{OT.COMM_INTEGRITY}
- \texttt{OT.COMM_CONFIDENTIALITY}
The security objectives OT.IDENTIFICATION, OT.RND are part of the security objectives of the certified Micro Controller [34] (see also Section 1.3.1.1) and Security Software [34] (see also Section 1.3.1.2.2), which are also components of this composite certification. Therefore the security objective statement is equivalent to the PP [5] for these two security objectives. OT.IDENTIFICATION is also included for the pre-personalisation feature of the TOE, which is additional functionality the PP allows.

The security objective OT.SEC_BOX_FW is related to the Secure Box, which is additional functionality the PP allows.

The security objective OT.CONFID-UPDATE-IMAGE_LOAD, OT.AUTH-LOAD-UPDATE-IMAGE, OT.SECURE_LOAD_ACODE, OT.SECURE_AC_ACTIVATION, OT.TOE_IDENTIFICATION are included for the OS Update which is additional functionality the PP allows. The security objectives OT.CARD-CONFIGURATION is included for the Config Applet which is additional functionality the PP allows. The security objectives OT.ATTACK-COUNTER and OT.RESTRICTED-MODE are included for the restricted mode which is additional functionality the PP allows. The security objectives OT.DOMAIN-RIGHTS, OT.APPLI-AUTH, OT.COMM_AUTH, OT.COMM_INTEGRITY, OT.COMM_CONFIDENTIALITY are objectives for the TOE as the GlobalPlatform API and the definitions for Secure Channel, Security Domains and Card Content Management are used from it.

The ST contains OE.APPLET, OE.VERIFICATION and OE.CODE-EVIDENCE from Security Objectives for the Operational Environment from [5]. Additionally, some of the Security Objectives for the Operational Environment from [5] are listed as TOE Security Objectives in this ST:

- OT.SCP.RECOVERY instead of OE.SCP.RECOVERY
- OT.SCP.SUPPORT instead of OE.SCP.SUPPORT
- OT.SCP.IC instead of OE.SCP.IC
- OT.CARD-MANAGEMENT instead of OE.CARD-MANAGEMENT

OT.SCP.RECOVERY, OT.SCP.SUPPORT, and OT.SCP.IC are objectives for the TOE as the Smart Card Platform belongs to the TOE for this evaluation. **OT.CARD-MANAGEMENT** is an objective for the TOE as the Card Manager belongs to the TOE for this evaluation. Moving objectives from the environment to the TOE, adds objectives to the TOE without changing the overall objectives. The statement of security objectives is therefore equivalent to the security objectives in the PP [5] to which conformance is claimed.

The security objectives O.INSTALL, O.LOAD, and O.DELETION from the PP [5] are not included since these functionality and objectives are covered by the refined **OT.CARD-MANAGEMENT**.

Note that the objective O.REMOTE is not included, since the TOE does not support Java Card RMI. The Java Card Protection Profile makes the use of Java Card RMI optional.

Note that the objective O.EXT-MEM is not included, since the TOE does not support "Extended Memory (EXT-MEM)". The Java Card Protection Profile makes the use of "Extended Memory (EXT-MEM)" optional.

A part of the security objectives for the environment defined in the PP [5] has been included in this ST. The other part of security objectives for the environment, which is present in the PP [5], is used as part of the security
objectives for the TOE in this ST. The ST also introduces eight additional security objectives for the environment. The additional objectives for the environment are:

- OE.USE_DIAG
- OE.USE_KEYS
- OE.PROCESS_SEC_IC
- OE.CONFID-UPDATE-IMAGE.CREATE
- OE.APPS-PROVIDER
- OE.VERIFICATION-AUTHORITY
- OE.KEY-CHANGE
- OE.SECURITY-DOMAINS

The security objective for the environment OE.PROCESS_SEC_IC is from the hardware platform (Micro Controller [34] see also Section 1.3.1.1) that is part of this composite product evaluation. Therefore the statement of security objectives for the environment is equivalent to the statement in the Security IC PP [10]. OE.USE_KEYS and OE.USE_DIAG are included because the Card Manager is part of the TOE and not a security objective for the environment as in PP [5].

The security objective for the environment OE.CONFID-UPDATE-IMAGE.CREATE is to cover the confidentiality during creation and transmission phase of D.UPDATE_IMAGE and therefore partly covers the threats introduced by the update mechanism which is additional functionality. OE.APPS-PROVIDER and OE.VERIFICATION-AUTHORITY cover trusted actors which enable the creation, distribution and verification of secure applications. OE.KEY-CHANGE covers the switch to trusted keys for the AP. OE.SECURITY-DOMAINS covers the management of security domains in the context of the GlobalPlatform Specification.

The statement of security objectives for the environment is therefore considered to be equivalent to the security objectives in the PP [5] to which conformance is claimed.

2.4.4 Security Functional Requirements Statement

The Security Functional Requirements Statement copies most SFRs as defined in the PP [5], with the exception of a number of options. For the copied set of SFRs the ST is considered equivalent to the statement of SFRs in the PP [5]. Moreover as requested by the PP [5] the ST adds additional threats, objectives and SFRs to fully cover and describe additional security functionality implemented in the TOE.

The TOE restricts remote access from the CAD to the services implemented by the applets on the card to none, and as a result the SFRs concerning Java Card RMI (FDP_ACF.1[JCRMI], SFRs FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI, FMT_MSA.1/EXPORT, FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI, FMT_SMF.1/JCRMI,
FMT_REV.1/JCRMI, and FMT_SMR.1/JCRMI) are not included in the ST. In the PP [5] the use of the Java Card RMI is optional. The TOE does not implement Java Card RMI.

The TOE does not allow external memory access to the services implemented by the applets on the card, and as a result the SFRs concerning "Management of External Memory (EXT-MEM)" (FDP_ACC.1/EXT_MEM, FDP_ACF.1/EXT_MEM, FMT_MSA.1/EXT_MEM, FMT_MSA.3/EXT_MEM and FMT_SMF.1/EXT_MEM) are not included in the ST. In the PP [5] the use of the "Management of External Memory (EXT-MEM)" is optional. The TOE does not implement "Management of External Memory (EXT-MEM)".

The SFR FDP_ITC.2/INSTALLER from the PP [5] is replaced by FDP_ITC.2[CCM] which enforces the Firewall access control policy and the Secure Channel Protocol information flow policy and which is more restrictive than the PACKAGE LOADING information flow control SFP from PP [5].

The set of SFRs that define the card content management mechanism CarG are partly replaced or refined and are considered to be equivalent or more restrictive because of the newly introduced SFPs:

1. Security Domain access control policy
2. Secure Channel Protocol information flow policy

These SFPs provide a concrete and more restrictive implementation of the PACKAGE LOADING information flow control SFP from PP [5] by following the information flow policy defined by GlobalPlatform specifications.

The table below lists the SFRs from CarG of PP [5] and their corresponding refinements in this ST.

<table>
<thead>
<tr>
<th>SFR from PP [5]</th>
<th>Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCO_NRO.2/CM</td>
<td>FCO_NRO.2[SC]</td>
</tr>
<tr>
<td>FDP_IFC.2/CM</td>
<td>FDP_IFC.2[SC]</td>
</tr>
<tr>
<td>FDP_IFF.1/CM</td>
<td>FDP_IFF.1[SC]</td>
</tr>
<tr>
<td>FDP_UIT.1/CM</td>
<td>FDP_UIT.1[CCM]</td>
</tr>
<tr>
<td>FIA_UID.1/CM</td>
<td>FIA_UID.1[SC]</td>
</tr>
<tr>
<td>FMT_MSA.1/CM</td>
<td>FMT_MSA.1[SC]</td>
</tr>
<tr>
<td>FMT_MSA.3/CM</td>
<td>FMT_MSA.3[SC]</td>
</tr>
<tr>
<td>FMT_SMF.1/CM</td>
<td>FMT_SMF.1[SC]</td>
</tr>
<tr>
<td>FMT_SMR.1/CM</td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td>FTP_ITC.1/CM</td>
<td>FTP_ITC.1[SC]</td>
</tr>
</tbody>
</table>

Tab. 2.1: CarG SFRs refinements

The following SFRs realize refinements of SFRs from PP [5] and add functionality to the TOE making the Security Functional Requirements Statement more restrictive than the PP [5]:

FDP_ROL.1[CCM], FPT_FLS.1[CCM] and FPT_PHP3 realize additional security functionality for the card manager which is allowed by the PP [5].
The set of SFRs that define the security domains mechanism as specified by GlobalPlatform, realize refinements of SFRs from PP [5] (see above table 2.1) and additional security functionality which is allowed by the PP [5]. This set of SFRs comprise FDP_AFF.1[SD], FDP_ACF.1[SD], FMT_MSA.1[SD], FMT_MSA.3[SD], FMT_SMF.1[SD], and FMT_SMR.1[SD].

The set of SFRs that define the secure channel mechanism as specified by GlobalPlatform, realize refinements of SFRs from PP [5] (see above table 2.1) and additional security functionality which is allowed by the PP [5]. This set of SFRs comprise FCO_NRO.2[SC], FDP_IFC.2[SC], FDP_IFF.1[SC], FMT_MSA.1[SC], FMT_MSA.3[SC], FMT_SMF.1[SC], FIA_UID.1[SC], FIA_UAU.1[SC], FIA_UAU.4[SC], and FTP_IIC.1[SC].

The set of SFRs that define the Secure Box, realize additional security functionality which is allowed by the PP [5]. This set of SFRs comprise FDP_ACC.2[SecureBox], FDP_ACF.1[SecureBox], FMT_MSA.1[SecureBox], FMT_MSA.3[SecureBox], and FMT_SMF.1[SecureBox].

The SFRs FAU_SAS.1[SCP], FIA_AFL.1[PIN] and FCS_RNG.1 realize additional security functionality which is allowed by the PP [5].

The set of SFRs that define the Config Applet realize additional security functionality, which is allowed by the PP [5]. This set of SFRs comprise FDP_IFC.2[CFG], FDP_IFF.1[CFG], FIA_UID.1[CFG], FMT_MSA.1[CFG], FMT_MSA.3[CFG], FMT_SMF.1[CFG], and FMT_SMR.1[CFG].

The set of SFRs that define the OS Update realize additional security functionality, which is allowed by the PP [5]. This set of SFRs comprise FDP_IFC.2[OSU], FDP_IFF.1[OSU], FMT_MSA.3[OSU], FMT_MSA.1[OSU], FMT_SMF.1[OSU], FIA_UID.1[OSU] FIA_UAU.4[OSU] and FPT_FLS.1[OSU].

The set of SFRs that define the Restricted Mode realize additional security functionality, which is allowed by the PP [5]. This set of SFRs comprise FDP_ACC.2[RM], FDP_ACF.1[RM], FMT_MSA.3[RM], FMT_MSA.1[RM], FMT_SMF.1[RM], FIA_UID.1[RM] and FIA_UAU.1[RM].
3 Security Aspects

This chapter describes the main security issues of the Java Card System and its environment addressed in this ST, called "security aspects", in a CC-independent way. In addition to this, the security aspects also give a semi-formal framework to express the CC security environment and objectives of the TOE. They can be instantiated as assumptions, threats, objectives (for the TOE and the environment) or organizational security policies. The description is based on [5].

3.1 Confidentiality

<table>
<thead>
<tr>
<th>SA.CONFID-UPDATE-IMAGE</th>
<th>Confidentiality of Update Image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The update image must be kept confidential. This concerns the non disclosure of the update image in transit to the card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SA.CONFID-APPLI-DATA</th>
<th>Confidentiality of Application Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application data must be protected against unauthorized disclosure. This concerns logical attacks at runtime in order to gain read access to other application’s data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SA.CONFID-JCS-CODE</th>
<th>Confidentiality of Java Card System Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Java Card System code must be protected against unauthorized disclosure. Knowledge of the Java Card System code may allow bypassing the TSF. This concerns logical attacks at runtime in order to gain a read access to executable code, typically by executing an application that tries to read the memory area where a piece of Java Card System code is stored.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SA.CONFID-JCS-DATA</th>
<th>Confidentiality of Java Card System Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Java Card System data must be protected against unauthorized disclosure. This concerns logical attacks at runtime in order to gain a read access to Java Card System data. Java Card System data includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card platform API classes as well.</td>
</tr>
</tbody>
</table>

3.2 Integrity

<table>
<thead>
<tr>
<th>SA.INTEG-UPDATE-IMAGE</th>
<th>Integrity of Update Image</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The update image must be protected against unauthorized modification. This concerns the modification of the image in transit to the card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SA.INTEG-APPLI-CODE</th>
<th>Integrity of Application Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application code must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to the memory zone where executable code is stored. In post-issuance application loading, this threat also concerns the modification of application code in transit to the card.</td>
</tr>
</tbody>
</table>
SA.INTEG-APPLI-DATA Integrity of Application Data
Application data must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain unauthorized write access to application data. In post-issuance application loading, this threat also concerns the modification of application data contained in a package in transit to the card. For instance, a package contains the values to be used for initializing the static fields of the package.

SA.INTEG-JCS-CODE Integrity of Java Card System Code
Java Card System code must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to executable code.

SA.INTEG-JCS-DATA Integrity of Java Card System Data
Java Card System data must be protected against unauthorized modification. This concerns logical attacks at runtime in order to gain write access to Java Card System data. Java Card System data includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card API classes as well.

3.3 Unauthorized Executions

SA.EXE-APPLI-CODE Execution of Application Code
Application (byte)code must be protected against unauthorized execution. This concerns:

1. invoking a method outside the scope of the accessibility rules provided by the access modifiers of the Java programming language ([29])
2. jumping inside a method fragment or interpreting the contents of a data memory area as if it was executable code
3. unauthorized execution of a remote method from the CAD (if the TOE provides JCRMI functionality).

SA.EXE-JCS-CODE Execution of Java Card System Code
Java Card System bytecode must be protected against unauthorized execution. Java Card System bytecode includes any code of the Java Card RE or API. This concerns:

1. invoking a method outside the scope of the accessibility rules provided by the access modifiers of the Java programming language ([29])
2. jumping inside a method fragment or interpreting the contents of a data memory area as if it was executable code. Note that execute access to native code of the Java Card System and applications is the concern of SA.NATIVE.
SA.FIREWALL
Firewall
The Firewall shall ensure controlled sharing of class instances\(^1\), and isolation of their data and code between packages (that is, controlled execution contexts) as well as between packages and the JCRE context. An applet shall not read, write, compare a piece of data belonging to an applet that is not in the same context, or execute one of the methods of an applet in another context without its authorization.

SA.NATIVE
Native Code Execution
Because the execution of native code is outside of the JCS TSF scope, it must be secured so as to not provide ways to bypass the TSFs of the JCS. Loading of native code, which is as well outside those TSFs, is submitted to the same requirements. Should native software be privileged in this respect, exceptions to the policies must include a rationale for the new security framework they introduce.

3.4 Bytecode Verification

SA.VERIFICATION
Bytecode Verification
Bytecode must be verified prior to being executed. Bytecode verification includes:

1. how well-formed CAP file is and the verification of the typing constraints on the bytecode,
2. binary compatibility with installed CAP files and the assurance that the export files used to check the CAP file correspond to those that will be present on the card when loading occurs.

3.5 Card Management

SA.CARD-MANAGEMENT
Card Management
1. The card manager (CM) shall control the access to card management functions such as the installation, update or deletion of applets.
2. The card manager shall implement the card issuer’s policy on the card.

SA.INSTALL
Installation
1. The TOE must be able to return to a safe and consistent state when the installation of a package or an applet fails or be cancelled (whatever the reasons).

\(^1\) This concerns in particular the arrays, which are considered as instances of the Object class in the Java programming language.
2. Installing an applet must have no effect on the code and data of already installed applets. The installation procedure should not be used to bypass the TSFs. In short, it is an atomic operation, free of harmful effects on the state of the other applets.

3. The procedure of loading and installing a package shall ensure its integrity and authenticity.

SA.SID Subject Identification

1. Users and subjects of the TOE must be identified.

2. The identity of sensitive users and subjects associated with administrative and privileged roles must be particularly protected; this concerns the Java Card RE, the applets registered on the card, and especially the default applet and the currently selected applet (and all other active applets in Java Card System). A change of identity, especially standing for an administrative role (like an applet impersonating the Java Card RE), is a severe violation of the SFR. Selection controls the access to any data exchange between the TOE and the CAD and therefore, must be protected as well. The loading of a package or any exchange of data through the APDU buffer (which can be accessed by any applet) can lead to disclosure of keys, application code or data, and so on.

SA.OBJ-DELETION Object Deletion

1. Deallocation of objects should not introduce security holes in the form of references pointing to memory zones that are not longer in use, or have been reused for other purposes. Deletion of collection of objects should not be maliciously used to circumvent the TSFs.

2. Erasure, if deemed successful, shall ensure that the deleted class instance is no longer accessible.

SA.DELETION Deletion

1. Deletion of installed applets (or packages) should not introduce security holes in the form of broken references to garbage collected code or data, nor should they alter integrity or confidentiality of remaining applets. The deletion procedure should not be maliciously used to bypass the TSFs.

2. Erasure, if deemed successful, shall ensure that any data owned by the deleted applet is no longer accessible (shared objects shall either prevent deletion or be made inaccessible). A deleted applet cannot be selected or
receive APDU commands. Package deletion shall make the code of the package no longer available for execution.

3. Power failure or other failures during the process shall be taken into account in the implementation so as to preserve the SFRs. This does not mandate, however, the process to be atomic. For instance, an interrupted deletion may result in the loss of user data, as long as it does not violate the SFRs.

The deletion procedure and its characteristics (whether deletion is either physical or logical, what happens if the deleted application was the default applet, the order to be observed on the deletion steps) are implementation-dependent. The only commitment is that deletion shall not jeopardize the TOE (or its assets) in case of failure (such as power shortage).

Deletion of a single applet instance and deletion of a whole package are functionally different operations and may obey different security rules. For instance, specific packages can be declared to be undeletable (for instance, the Java Card API packages), or the dependency between installed packages may forbid the deletion (like a package using super classes or super interfaces declared in another package).

3.6 Services

SA.ALARM

Alarm

The TOE shall provide appropriate feedback upon detection of a potential security violation. This particularly concerns the type errors detected by the bytecode verifier, the security exceptions thrown by the Java Card VM, or any other security-related event occurring during the execution of a TSF.

SA.OPERATE

Operate

1. The TOE must ensure continued correct operation of its security functions.
2. In case of failure during its operation, the TOE must also return to a well-defined valid state before the next service request.

SA.RESOURCES

Resources

The TOE controls the availability of resources for the applications and enforces quotas and limitations in order to prevent unauthorized denial of service or malfunction of the TSFs. This concerns both execution (dynamic memory allocation) and installation (static memory allocation) of applications and packages.

SA.CIPHER

Cipher

The TOE shall provide a means to the applications for ciphering sensitive data, for instance, through a programming interface to low-level, highly secure cryptographic services. In particular, those services must support cryptographic algorithms consistent with cryptographic usage policies and standards.
SA.KEY-MNGT

Key Management

The TOE shall provide a means to securely manage cryptographic keys. This includes:

1. Keys shall be generated in accordance with specified cryptographic key generation algorithms and specified cryptographic key sizes,
2. Keys must be distributed in accordance with specified cryptographic key distribution methods,
3. Keys must be initialized before being used,
4. Keys shall be destroyed in accordance with specified cryptographic key destruction methods.

SA.PIN-MNGT

PIN Management

The TOE shall provide a means to securely manage PIN objects. This includes:

1. Atomic update of PIN value and try counter,
2. No rollback on the PIN-checking function,
3. Keeping the PIN value (once initialized) secret (for instance, no clear-PIN-reading function),
4. Enhanced protection of PIN’s security attributes (state, try counter ...) in confidentiality and integrity.

SA.SCP

Smart Card Platform

The smart card platform must be secure with respect to the SFRs. Then:

1. After a power loss, RF signal loss or sudden card removal prior to completion of some communication protocol, the SCP will allow the TOE on the next power up to either complete the interrupted operation or revert to a secure state.
2. It does not allow the SFRs to be bypassed or altered and does not allow access to other low-level functions than those made available by the packages of the Java Card API. That includes the protection of its private data and code (against disclosure or modification) from the Java Card System.
3. It provides secure low-level cryptographic processing to the Java Card System.
4. It supports the needs for any update to a single persistent object or class field to be atomic, and possibly a low-level transaction mechanism.
5. It allows the Java Card System to store data in a “persistent technology memory” or in volatile memory, depending on its needs (for instance, transient objects must not be stored in non-volatile memory). The memory model is structured and allows for low-level control accesses (segmentation fault detection).
6. It safely transmits low-level exceptions to the TOE (arithmetic exceptions, checksum errors), when applicable.

7. Finally, it is required that the IC is designed in accordance with a well-defined set of policies and standards (for instance, those specified in [10]), and will be tamper resistant to actually prevent an attacker from extracting or altering security data (like cryptographic keys) by using commonly employed techniques (physical probing and sophisticated analysis of the chip). This especially matters to the management (storage and operation) of cryptographic keys.

SA.TRANSACTION
Transaction
The TOE must provide a means to execute a set of operations atomically. This mechanism must not jeopardise the execution of the user applications. The transaction status at the beginning of an applet session must be closed (no pending updates).

3.7 Config Applet

SA.CONFIG-APPLET
Config Applet
The Config Applet is a JCOP functionality which allows to:

1. Read and modify configuration items in the configuration area of the TOE,
2. Disable Access to configuration item.

3.8 OS Update

SA.OSU
OS Update
The UpdaterOS allows to update JCOP5.1 OS and the UpdaterOS itself. It ensures that only valid updates can be installed on the TOE.

3.9 Restricted Mode

SA.RM
Restricted Mode
If the Attack Counter reaches its limit the TOE goes into Restricted Mode. In this mode it is possible to perform a limited set of functions, like authenticate against the ISD, reset the Attack Counter or read logging information.
4 Security Problem Definition (ASE_SPD)

4.1 Assets

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of assets is always intended with respect to un-trusted people or software, as various parties are involved during the first stages of the smart card product life-cycle. Details concerning the threats are given in Section 4.2 hereafter. Assets have to be protected, some in terms of confidentiality and some in terms of integrity or both integrity and confidentiality. These assets might get compromised by the threats that the TOE is exposed to. The assets to be protected by the TOE are listed below. They are grouped according to whether it is data created by and for the user (User data) or data created by and for the TOE (TSF data). This definition of grouping is taken from Section 5.1 of [5].

4.1.1 User Data

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.APP_CODE</td>
<td>The code of the applets and libraries loaded on the card. To be protected from unauthorized modification.</td>
</tr>
<tr>
<td>D.APP_C_DATA</td>
<td>Confidential sensitive data of the applications, like the data contained in an object, a static field of a package, a local variable of the currently executed method, or a position of the operand stack. To be protected from unauthorized disclosure.</td>
</tr>
<tr>
<td>D.APP_I_DATA</td>
<td>Integrity sensitive data of the applications, like the data contained in an object, a static field of a package, a local variable of the currently executed method, or a position of the operand stack. To be protected from unauthorized modification.</td>
</tr>
<tr>
<td>D.APP_KEYS</td>
<td>Cryptographic keys owned by the applets. To be protected from unauthorized disclosure and modification.</td>
</tr>
<tr>
<td>D.PIN</td>
<td>Any end-user’s PIN. To be protected from unauthorized disclosure and modification.</td>
</tr>
<tr>
<td>D.APSD_KEYS</td>
<td>Refinement of D.APP_KEYS of [5]. Application Provider Security Domains cryptographic keys needed to establish secure channels with the AP. These keys can be used to load and install applications on the card if the Security Domain has the appropriate privileges. To be protected from unauthorized disclosure and modification.</td>
</tr>
</tbody>
</table>
D.ISD_KEYS | Refinement of D.APP_KEYS of [5]. Issuer Security Domain cryptographic keys needed to perform card management operations on the card. To be protected from unauthorized disclosure and modification.

D.VASD.Keys | Refinement of D.APP_KEYS of [5]. Verification Authority Security Domain cryptographic keys needed to verify applications Mandated DAP signature. To be protected from unauthorized disclosure and modification.

D.CARD_MNGT_DATA | The data of the card management environment, like for instance, the identifiers, the privileges, life cycle states, the memory resource quotas of applets and security domains. To be protected from unauthorized modification.

| Tab. 4.1: User Data Assets |

4.1.2 TSF Data

D.API_DATA | Private data of the API, like the contents of its private fields. To be protected from unauthorized disclosure and modification.

D.CRYPTO | Cryptographic data used in runtime cryptographic computations, like a seed used to generate a key. To be protected from unauthorized disclosure and modification.

D.JCS_CODE | The code of the Java Card System. To be protected from unauthorized disclosure and modification.

D.JCS_DATA | The internal runtime data areas necessary for the execution of the JCVM, such as, for instance, the frame stack, the program counter, the class of an object, the length allocated for an array, any pointer used to chain data-structures. To be protected from unauthorized disclosure or modification.

D.SEC_DATA | The runtime security data of the JCRE, like, for instance, the AIDs used to identify the installed applets, the currently selected applet, the current context of execution and the owner of each object. To be protected from unauthorized disclosure and modification.
D.UPDATE_IMAGE Can be an update for JCOP5.1 OS and UpdaterOS. It is sent to the TOE, received by the UpdaterOS. It includes executable code, configuration data, as well as a Sequence Number (Received Sequence Number) and Image Type. To be protected from unauthorized disclosure and modification. It is decrypted using the Package Decryption Key and its signature is verified using the Verification Key. Is also referred to as Additional Code, see [31].

D.CONFIG_ITEM A configuration that can be changed using the Config Applet.

D.ATTACK_COUNTER The Attack Counter is incremented when a potential attack is detected. When the Attack Counter reaches its limit, the card goes into restricted mode.

D.TOE_IDENTIFIER Identification Data to identify the TOE.

Tab. 4.2: TSF Data Assets

4.2 Threats

4.2.1 Confidentiality

T.CONFID-APPLI-DATA Confidentiality of Application Data
The attacker executes an application to disclose data belonging to another application. See SA.CONFID-APPLI-DATA for details. Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYS.

T.CONFID-JCS-CODE Confidentiality of Java Card System Code
The attacker executes an application to disclose the Java Card System code. See SA.CONFID-JCS-CODE for details. Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA Confidentiality of Java Card System Data
The attacker executes an application to disclose data belonging to the Java Card System. See SA.CONFID-JCS-DATA for details. Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.

4.2.2 Integrity

T.INTEG-APPLI-CODE Integrity of Application Code
The attacker executes an application to alter (part of) its own code or another application’s code. See SA.INTEG-APPLI-CODE for details. Directly threatened asset(s): D.APP_CODE.
T.INTEG-APPLI-CODE.LOAD Integrity of Application Code - Load
The attacker modifies (part of) its own or another application code when an application package is transmitted to the card for installation. See SA.INTEG-APPLI-CODE for details. Directly threatened asset(s): D.APPL._CODE.

T.INTEG-APPLI-DATA[REFINED] Integrity of Application Data
The attacker executes an application to alter (part of) another application’s data. See SA.INTEG-APPLI-DATA for details. Directly threatened asset(s): D.APPL._DATA, D.PIN, D.APPL._KEYS, D.ISD._KEYS, D.VASD._KEYS and S.APSD._KEYS.
This threat is a refinement of the Threat T.INTEG-APPLI-DATA from [5].

T.INTEG-APPLI-DATA.LOAD Integrity of Application Data - Load
The attacker modifies (part of) the initialization data contained in an application package when the package is transmitted to the card for installation. See SA.INTEG-APPLI-DATA for details. Directly threatened asset(s): D.APPL._DATA and D.APPL._KEYS.

T.INTEG-JCS-CODE Integrity of Java Card System Code
The attacker executes an application to alter (part of) the Java Card System code. See SA.INTEG-JCS-CODE for details. Directly threatened asset(s): D.JCS._CODE.

T.INTEG-JCS-DATA Integrity of Java Card System Data
The attacker executes an application to alter (part of) Java Card System or API data. See SA.INTEG-JCS-DATA for details. Directly threatened asset(s): D.API._DATA, D.SEC._DATA, D.JCS._DATA and D.CRYPTO.

4.2.3 Identity Usurpation

T.SID.1 Subject Identification 1
An applet impersonates another application, or even the Java Card RE, in order to gain illegal access to some resources of the card or with respect to the end user or the terminal. See SA.SID for details. Directly threatened asset(s): D.SEC._DATA (other assets may be jeopardized should this attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN and D.APPL._KEYS.

T.SID.2 Subject Identification 2
The attacker modifies the TOE’s attribution of a privileged role (e.g. default applet and currently selected applet), which allows illegal impersonation of this role. See SA.SID for further details. Directly threatened asset(s): D.SEC._DATA (any other asset may be jeopardized should this attack succeed, depending on whose identity was forged).
4.2.4 Unauthorized Execution

T.EXE-CODE.1

Code Execution 1

An applet performs an unauthorized execution of a method. See **SA.EXE-JCS-CODE** and **SA.EXE-APPLI-CODE** for details. Directly threatened asset(s): **D.APP_CODE**.

T.EXE-CODE.2

Code Execution 2

An applet performs an execution of a method fragment or arbitrary data. See **SA.EXE-JCS-CODE** and **SA.EXE-APPLI-CODE** for details. Directly threatened asset(s): **D.APP_CODE**.

T.NATIVE

Native Code Execution

An applet executes a native method to bypass a TOE Security Function such as the firewall. See **SA.NATIVE** for details. Directly threatened asset(s): **D.JCS_DATA**.

4.2.5 Denial of Service

T.RESOURCES

Consumption of Resources

An attacker prevents correct operation of the Java Card System through consumption of some resources of the card: RAM or NVRAM. See **SA.RESOURCES** for details. Directly threatened asset(s): **D.JCS_DATA**.

4.2.6 Card Management

T.UNAUTHORIZED_CARD_MNGT

Unauthorized Card Management

The attacker performs unauthorized card management operations (for instance impersonates one of the actor represented on the card) in order to take benefit of the privileges or services granted to this actor on the card such as fraudulent:

- load of a package file
- installation of a package file
- extradition of a package file or an applet
- personalization of an applet or a Security Domain
- deletion of a package file or an applet
- privileges update of an applet or a Security Domain

Directly threatened asset(s): **D.ISD_KEYS, D.APSD_KEYS, D.APP_C_DATA, D.APP_I_DATA, D.APP_CODE, D.SEC_DATA, and D.CARD_MNGT_DATA** (any other asset may be jeopardized should this attack succeed, depending on the virulence of the installed application).

This security objective is a refinement of the Threats T.INSTALL and T.DELETION from [5].
T.COM_EXPLOIT Communication Channel Remote Exploit
An attacker remotely exploits the communication channels established between a third party and the TOE in order to modify or disclose confidential data. All assets are threatened.

T.LIFE_CYCLE Life Cycle
An attacker accesses to an application outside of its expected availability range thus violating irreversible life cycle phases of the application (for instance, an attacker repersonalizes the application). Directly threatened asset(s): D.APP_I_DATA, D.APP_C_DATA, and D.CARD_MNGT_DATA.

4.2.7 Services
T.OBJ-DELETION Object Deletion
The attacker keeps a reference to a garbage collected object in order to force the TOE to execute an unavailable method, to make it to crash, or to gain access to a memory containing data that is now being used by another application. See SA.OBJ-DELETION for further details. Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYS.

4.2.8 Miscellaneous
T.PHYSICAL Physical Tampering
The attacker discloses or modifies the design of the TOE, its sensitive data or application code by physical (opposed to logical) tampering means. This threat includes IC failure analysis, electrical probing, unexpected tearing, and DPA. That also includes the modification of the runtime execution of Java Card System or SCP software through alteration of the intended execution order of (set of) instructions through physical tampering techniques. This threatens all the identified assets. This threat refers to the point (7) of the security aspect SA.SCP, and all aspects related to confidentiality and integrity of code and data.

4.2.9 Random Numbers
T.RND Deficiency of Random Numbers
An attacker may predict or obtain information about random numbers generated by the TOE for instance because of a lack of entropy of the random numbers provided. An attacker may gather information about the produced random numbers which might be a problem because they may be used for instance to generate cryptographic keys. Here the attacker is expected to take advantage of statistical properties of the random numbers generated by the TOE without specific knowledge about the TOE's generator. Malfunctions or premature ageing are also considered which may assist in getting information about random numbers.
4.2.10 Config Applet

T.CONFIG Unauthorized configuration
The attacker tries to change configuration items without authorization. Directly threatened asset(s): D.CONFIG_ITEM.

4.2.11 OS Update

T.CONFID-UPDATE-IMAGE.LOAD Confidentiality of Update Image - Load
The attacker discloses (part of) the image used to update the TOE in the field while the image is transmitted to the card for installation. See SA.CONFID-UPDATE-IMAGE for details. Directly threatened asset(s): D.UPDATE_IMAGE, D.JCS_CODE, and D.JCS_DATA.

T.UNAUTH-LOAD-UPDATE-IMAGE Load unauthorized version of Update Image
The attacker tries to upload an unauthorized Update Image. Directly threatened asset(s): D.JCS_CODE, D.JCS_DATA, D.UPDATE_IMAGE.

T.INTEG-UPDATE-IMAGE.LOAD Integrity of Update Image - Load
The attacker modifies (part of) the image used to update the TOE in the field while the image is transmitted to the card for installation. See SA.INTEG-UPDATE-IMAGE for details. Directly threatened asset(s): D.UPDATE_IMAGE, D.JCS_CODE, and D.JCS_DATA.

T.INTERRUPT-OSU OS Update procedure interrupted
The attacker tries to interrupt the OS Update procedure (Load Phase through activation of additional code) leaving the TOE in a partially functional state. Directly threatened asset(s): D.JCS_CODE, D.JCS_DATA, D.UPDATE_IMAGE, D.TOE_IDENTIFIER.

4.2.12 Secure Box

T.SEC_BOX_BORDER SecureBox Border Infringement
An attacker may try to use malicious code placed in the Secure Box to modify the correct behavior of the OS. With the aim to
1. disclose the Java Card System code,
2. disclose or alter applet code, disclose or alter Java Card System data, or disclose or alter applet data.

4.2.13 Restricted Mode

T.ATTACK-COUNTER Modification of the Attack Counter
The attacker tries to modify the attack counter without authorization. Directly threatened asset: D.ATTACK_COUNTER.
4.3 Organisational Security Policies

OSP.VERIFICATION File Verification
This policy shall ensure the consistency between the export files used in the verification and those used for installing the verified file. The policy must also ensure that no modification of the file is performed in between its verification and the signing by the verification authority. See SA.VERIFICATION for details.

If the application development guidance provided by the platform developer contains recommendations related to the isolation property of the platform, this policy shall also ensure that the verification authority checks that these recommendations are applied in the application code.

OSP.PROCESS-TOE Identification of the TOE
An accurate identification must be established for the TOE. This requires that each instantiation of the TOE carries this identification.

OSP.KEY-CHANGE Security Domain Keys Change
The AP shall change its initial security domain keys (APSD) before any operation on its Security Domain.

OSP.SECURITY-DOMAINS Security Domains
Security domains can be dynamically created, deleted and blocked during usage phase in post-issuance mode.

OSP.SECURE-BOX Secure Box Border
Execution of untrusted native code shall be possible without any harm, manipulation, or influence on other parts of the TOE.

4.4 Assumptions

Note that the assumption A.DELETION is excluded. The Card Manager is part of the TOE and therefore the assumption is no longer relevant.

A.APPLET Applets without Native Methods
Applets loaded post-issuance do not contain native methods. The Java Card specification explicitly "does not include support for native methods" ([3]) outside the API.

A.VERIFICATION Bytecode Verification
All the bytecodes are verified at least once, before the loading, before the installation or before the execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution time.
Usage of TOE’s Secure Communication Protocol by OE

It is assumed that the operational environment supports and uses the secure communication protocols offered by the TOE.

Protected Storage of Keys Outside of TOE

It is assumed that the keys which are stored outside the TOE and which are used for secure communication and authentication between Smart Card and terminals are protected for confidentiality and integrity in their own storage environment. This is especially true for D.APSD KEYS, D.ISD KEYS, and D.VASD KEYS.

Info: This is to assume that the keys used in terminals or systems are correctly protected for confidentiality and integrity in their own environment, as the disclosure of such information which is shared with the TOE but is not under the TOE control, may compromise the security of the TOE.

Protection during Packaging, Finishing and Personalisation

It is assumed that security procedures are used after delivery of the TOE by the TOE Manufacturer up to delivery to the end consumer to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or unauthorised use). This means that the Phases after TOE Delivery are assumed to be protected appropriately.

The assets to be protected are: The information and material produced and/or processed by the Security IC Embedded Software Developer in Phase 1 and by the Composite Product Manufacturer can be grouped as follows:

1. the Security IC Embedded Software including specifications, implementation and related documentation,
2. pre-personalisation and personalisation data including specifications of formats and memory areas, test related data,
3. the User Data and related documentation, and
4. material for software development support

as long as they are not under the control of the TOE Manufacturer.

Application Provider

The AP is a trusted actor that provides basic or secure applications. He is responsible for his security domain keys (D.APSD KEYS).

Info: An AP generally refers to the entity that issues the application. For instance it can be a financial institution for a payment application such as EMV or a transport operator for a transport application.

Verification Authority

The VA is a trusted actor who is able to verify bytecode of an application loaded on
the card, guarantee and generate the digital signature attached to an application and ensure that its public key for verifying the application signature is on the TOE.

Info: As a consequence, it guarantees the success of the application validation upon loading.
5 Security Objectives

5.1 Security Objectives for the TOE

5.1.1 Identification

OT.SID Subject Identification
The TOE shall uniquely identify every subject (applet, or package) before granting it access to any service.

5.1.2 Execution

OT.FIREWALL Firewall
The TOE shall ensure controlled sharing of data containers owned by applets of different packages or the JCRE and between applets and the TSFs. See SA.FIREWALL for details.

OT.GLOBAL ARRAYS_CONFID Confidentiality of Global Arrays
The TOE shall ensure that the APDU buffer that is shared by all applications is always cleaned upon applet selection. The TOE shall ensure that the global byte array used for the invocation of the install method of the selected applet is always cleaned after the return from the install method.

OT.GLOBAL ARRAYS_INTEG Integrity of Global Arrays
The TOE shall ensure that only the currently selected applications may have a write access to the APDU buffer and the global byte array used for the invocation of the install method of the selected applet.

OT.NATIVE Native Code
The only means that the Java Card VM shall provide for an application to execute native code is the invocation of a method of the Java Card API, or any additional API. See SA.NATIVE for details.

OT.OPERATE Correct Operation
The TOE must ensure continued correct operation of its security functions. See SA.OPERATE for details.

OT.REALLOCATION Secure Re-Allocation
The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the Java Card VM does not disclose any information that was previously stored in that block.

OT.RESOURCES Resources availability
The TOE shall control the availability of resources for the applications. See SA.RESOURCES for details.
5.1.3 Services

OT.ALARM Alarm
The TOE shall provide appropriate feedback information upon detection of a potential security violation. See SA.ALARM for details.

OT.CIPHER Cipher
The TOE shall provide a means to cipher sensitive data for applications in a secure way. In particular, the TOE must support cryptographic algorithms consistent with cryptographic usage policies and standards. See SA.CIPHER for details.

OT.KEY-MNGT Key Management
The TOE shall provide a means to securely manage cryptographic keys. This concerns the correct generation, distribution, access and destruction of cryptographic keys. See SA.KEY-MNGT.

OT.PIN-MNGT Pin Management
The TOE shall provide a means to securely manage PIN objects. See SA.PIN-MNGT for details.
AppNote: PIN objects may play key roles in the security architecture of client applications. The way they are stored and managed in the memory of the smart card must be carefully considered, and this applies to the whole object rather than the sole value of the PIN.

OT.TRANSACTION Transaction
The TOE must provide a means to execute a set of operations atomically. See SA.TRANSACTION for details.

5.1.4 Object Deletion

OT.OBJ-DELETION Object Deletion
The TOE shall ensure the object deletion shall not break references to objects. See SA.OBJ-DELETION for further details.

5.1.5 Applet Management

OT.APLI-AUTH Application Authentication
The card manager shall enforce the application security policies established by the card issuer by requiring application authentication during application loading on the card. This security objective is a refinement of the Security Objective O.LOAD from [5].
AppNote: Each application loaded onto the TOE has been signed by a VA. The VA will guarantee that the security policies established by the card issuer on applications are enforced. For example this authority (DAP) or a third party (Mandated DAP) can
be present on the TOE as a Security Domain whose role is to verify each signature at application loading.

OT.DOMAIN-RIGHTS
Domain Rights
The Card issuer shall not get access or change personalized AP Security Domain keys which belong to the AP. Modification of a Security Domain keyset is restricted to the AP who owns the security domain.
AppNote: APs have a set of keys that allows them to establish a secure channel between them and the platform. These keys sets are not known by the TOE issuer. The security domain initial keys are changed before any operation on the SD (OE.KEY-CHANGE).

OT.COMM_AUTH
Communication Mutual Authentication
The TOE shall authenticate the origin of the card management requests that the card receives, and authenticate itself to the remote actor.

OT.COMM_INTEGRITY
Communication Request Integrity
The TOE shall verify the integrity of the card management requests that the card receives.

OT.COMM_CONFIDENTIALITY
Communication Request Confidentiality
The TOE shall be able to process card management requests containing encrypted data.

5.1.6 Card Management

OT.CARD-MANAGEMENT
Card Management
The TOE shall provide card management functionalities (loading, installation, extradition, deletion of applications and GP registry updates) in charge of the life cycle of the whole device and installed applications (applets). The card manager, the application with specific rights responsible for the administration of the smart card, shall control the access to card management functions. It shall also implement the card issuer's policy on card management.

The Security Objective from [5] for the environment OE.CARD-MANAGEMENT is listed as TOE Security Objective **OT.CARD-MANAGEMENT** for the TOE as the Card Manager belongs to the TOE for this evaluation. This security objective is a refinement for the Security Objectives O.INSTALL, O.LOAD, and O.DELETION from [5]. Thus, the following objectives are also covered:

- The TOE shall ensure that the installation of an applet performs as expected (See SA.INSTALL for details).
- The TOE shall ensure that the loading of a package into the card is secure.
- The TOE shall ensure that the deletion of a package from the TOE is secure.
AppNote: The card manager will be tightly connected in practice with the rest of the TOE, which in return shall very likely rely on the card manager for the effective enforcement of some of its security functions. The mechanism used to ensure authentication of the TOE issuer, that manages the TOE, or of the Service Providers owning a Security Domain with card management privileges is a secure channel. This channel will be used afterwards to protect commands exchanged with the TOE in confidentiality and integrity. The platform guarantees that only the ISD or the Service Providers owning a Security Domain with the appropriate privilege (Delegated Management) can manage the applications on the card associated with its Security Domain. This is done accordingly with the card issuer's policy on card management. The actor performing the operation must beforehand authenticate with the Security Domain. In the case of Delegated Management, the card management command will be associated with an electronic signature (GlobalPlatform token) verified by the ISD before execution.

The Security Objective from [5] for the environment OE.CARD-MANAGEMENT is listed as TOE Security Objective OT.CARD-MANAGEMENT for the TOE as the Card Manager belongs to the TOE for this evaluation. This security objective is a refinement for the Security Objectives O.INSTALL, O.LOAD, and O.DELETION from [5]. Thus, the following AppNote applicable to O.DELETION applies also:

- Usurpation of identity resulting from a malicious installation of an applet on the card may also be the result of perturbing the communication channel linking the CAD and the card. Even if the CAD is placed in a secure environment, the attacker may try to capture, duplicate, permute or modify the packages sent to the card. He may also try to send one of its own applications as if it came from the card issuer. Thus, this objective is intended to ensure the integrity and authenticity of loaded CAP files.

5.1.7 Smart Card Platform

OT.SCP.IC
IC Physical Protection

The SCP shall provide all IC security features against physical attacks. This security objective for the environment refers to the point (7) of the security aspect SA.SCP.

AppNote: The Security Objectives from [5] for the environment OE.SCP.RECOVERY, OE.SCP.SUPPORT, and OE.SCP.IC are listed as TOE Security Objectives (OT.SCP.RECOVERY, OT.SCP.SUPPORT, and OT.SCP.IC) for the TOE in this section as the Smart Card Platform belongs to the TOE for this evaluation.

OT.SCP.RECOVERY
SCP Recovery

If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation is in progress, the SCP must allow the TOE to eventually complete the interrupted operation successfully, or recover to a consistent and secure state. This security objective for the environment refers to the security aspect SA.SCP.
AppNote: The Security Objectives from [5] for the environment OE.SCP.RECOVERY, OE.SCP.SUPPORT, and OE.SCP.IC are listed as TOE Security Objectives (OT.SCP.RECOVERY, OT.SCP.SUPPORT, and OT.SCP.IC) for the TOE in this section as the Smart Card Platform belongs to the TOE for this evaluation.

OT.SCP.SUPPORT
SCP Support
The SCP shall support the TSFs of the TOE. This security objective refers to the security aspects 2, 3, 4 and 5 of SA.SCP

AppNote: The Security Objectives from [5] for the environment OE.SCP.RECOVERY, OE.SCP.SUPPORT, and OE.SCP.IC are listed as TOE Security Objectives (OT.SCP.RECOVERY, OT.SCP.SUPPORT, and OT.SCP.IC) for the TOE in this section as the Smart Card Platform belongs to the TOE for this evaluation.

OT.IDENTIFICATION
TOE identification
The TOE must provide means to store Initialization Data and Pre-personalization Data in its non-volatile memory. The Initialization Data (or parts of them) are used for TOE identification.

5.1.8 SecureBox
OT.SEC_BOX_FW SecureBox firewall
The TOE shall provide separation between the Secure Box native code and the Java Card System. The separation shall comprise software execution and data access.

5.1.9 Random Numbers
OT.RND Quality of random numbers
The TOE will ensure the cryptographic quality of random number generation. For instance random numbers shall not be predictable and shall have sufficient entropy. The TOE will ensure that no information about the produced random numbers is available to an attacker since they might be used for instance to generate cryptographic keys.

5.1.10 OS Update Mechanism
OT.CONFID-UPDATE-IMAGE.LOAD Confidentiality of Update Image - Load
The TOE shall ensure that the encrypted image transferred to the device is not disclosed during the installation. The keys used for decrypting the image shall be kept confidential.

OT.AUTH-LOAD-UPDATE-IMAGE Authorization of Update Image - Load
The TOE shall ensure that it is only possible to load an authorized image.
The following Security Objectives have been added to comply to JIL "Security requirements for post-delivery code loading" [31].

OT.SECURE_LOAD_ACODE
Secure loading of the Additional Code
The Loader of the Initial TOE shall check an evidence of authenticity and integrity of the loaded Additional Code. The Loader enforces that only the allowed version of the Additional Code can be loaded on the Initial TOE. The Loader shall forbid the loading of an Additional Code not intended to be assembled with the Initial TOE. During the Load Phase of an Additional Code, the TOE shall remain secure.

OT.SECURE_AC_ACTIVATION
Secure activation of the Additional Code
Activation of the Additional Code and update of the Identification Data shall be performed at the same time in an Atomic way. All the operations needed for the code to be able to operate as in the Final TOE shall be completed before activation. If the Atomic Activation is successful, then the resulting product is the Final TOE, otherwise (in case of interruption or incident which prevents the forming of the Final TOE), the Initial TOE shall remain in its initial state or fail secure.

OT.TOE_IDENTIFICATION
Secure identification of the TOE
The Identification Data identifies the Initial TOE and Additional Code. The TOE provides means to store Identification Data in its non-volatile memory and guarantees the integrity of these data. After Atomic Activation of the Additional Code, the Identification Data of the Final TOE allows identifications of Initial TOE and Additional Code. The user shall be able to uniquely identify Initial TOE and Additional Code(s) which are embedded in the Final TOE.

5.1.11 Config Applet

OT.CARD-CONFIGURATION
Card Configuration
The TOE shall ensure that the customer can only configure customer configuration items and that NXP can configure customer and NXP configuration items. Additionally, the customer can only disable the customer configuration and NXP can disable customer and NXP configuration.

5.1.12 Restricted Mode

OT.ATTACK-COUNTER
Attack Counter
The TOE shall ensure that only the ISD can reset the Attack Counter.

OT.RESTRICTED-MODE
Restricted Mode
The TOE shall ensure that in Restricted Mode all operations return an error except for the limited set of commands that are allowed by the TOE when in Restricted Mode.
5.2 Security Objectives for the Operational Environment

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.APLET</td>
<td>Applet
No applet loaded post-issuance shall contain native methods.</td>
</tr>
<tr>
<td>OE.VERIFICATION</td>
<td>Bytecode Verification
All the bytecodes shall be verified at least once, before the loading, before the installation or before the execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution time. See SA.VERIFICATION for details. Additionally, the applet shall follow all the recommendations, if any, mandated in the platform guidance for maintaining the isolation property of the platform. Application Note:
Constraints to maintain the isolation property of the platform are provided by the platform developer in application development guidance. The constraints apply to all application code loaded in the platform.</td>
</tr>
<tr>
<td>OE.CODE-EVIDENCE</td>
<td>Code Evidence
For application code loaded pre-issuance, evaluated technical measures implemented by the TOE or audited organizational measures must ensure that loaded application has not been changed since the code verifications required in OE.VERIFICATION. For application code loaded post-issuance and verified off-card according to the requirements of OE.VERIFICATION, the verification authority shall provide digital evidence to the TOE that the application code has not been modified after the code verification and that he is the actor who performed code verification. For application code loaded post-issuance and partially or entirely verified on-card, technical measures must ensure that the verification required in OE.VERIFICATION are performed. On-card bytecode verifier is out of the scope of this Protection Profile. Application Note: For application code loaded post-issuance and verified off-card, the integrity and authenticity evidence can be achieved by electronic signature of the application code, after code verification, by the actor who performed verification.</td>
</tr>
<tr>
<td>OE.APPS-PROVIDER</td>
<td>Application Provider
The AP shall be a trusted actor that provides applications. The AP is responsible for its security domain keys.</td>
</tr>
<tr>
<td>OE.VERIFICATION-AUTHORITY</td>
<td>Verification Authority
The VA should be a trusted actor who is able to verify bytecode of an application loaded on the card, guarantee and generate the digital signature attached to an application and ensure that its public key for verifying the application signature is on the TOE.</td>
</tr>
<tr>
<td>OE.KEY-CHANGE</td>
<td>Security Domain Key Change
The AP must change its security domain initial keys before any operation on it.</td>
</tr>
</tbody>
</table>
Security Domains
Security domains can be dynamically created, deleted and blocked during usage phase in post-issuance mode.

Secure TOE communication protocols
Secure TOE communication protocols shall be supported and used by the environment.

Protection of OPE keys
During the TOE usage, the terminal or system in interaction with the TOE, shall ensure the protection (integrity and confidentiality) of their own keys by operational means and/or procedures.

Protection during composite product manufacturing
Security procedures shall be used after TOE Delivery up to delivery to the end-consumer to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or unauthorised use). This means that Phases after TOE Delivery up to the end of Phase 6 must be protected appropriately.

Confidentiality of Update Image - CREATE
The off-card Update Image Creator ensures that the image is signed and transferred encrypted to the device and is not disclosed during the creation and transfer. The keys used for signing and encrypting the image are kept confidential.
6 Extended Components Definition (ASE_ECD)

6.1 Definition of Family ”Generation of random numbers (FCS_RNG)”

This section has been taken over from the certified (BSI-PP-0084-2014) Smartcard IC Platform Protection Profile [10].

6.1.1 Family behavior

This family defines quality requirements for the generation of random numbers which are intended to be use for cryptographic purposes.

Component leveling:

![Random Number Generation](image)

Fig. 6.1: Random Number Generation

<table>
<thead>
<tr>
<th>FCS_RNG</th>
<th>Generation of random numbers requires that random numbers meet a defined quality metric.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management:</td>
<td>FCS_RNG.1</td>
</tr>
<tr>
<td></td>
<td>There are no management activities foreseen.</td>
</tr>
<tr>
<td>Audit:</td>
<td>FCS_RNG.1</td>
</tr>
<tr>
<td></td>
<td>There are no actions defined to be auditable.</td>
</tr>
</tbody>
</table>

FCS_RNG.1

Hierarchical to: No other components.

Dependencies

No dependencies.

FCS_RNG.1.1

The TSF shall provide a [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic] random number generator that implements: [assignment: list of security capabilities].

FCS_RNG.1.2

The TSF shall provide [selection: bits, octets of bits, numbers [assignment: format of the numbers]] that meet [assignment: a defined quality metric].

Application Note: A physical random number generator (RNG) produces the random number by a noise source based on physical random processes. A non-physical true RNG uses a noise source based on non-physical random processes like human interaction (key strokes, mouse movement). A deterministic RNG uses an random seed to produce a pseudorandom output. A hybrid RNG combines the principles of physical and deterministic RNGs where a hybrid physical RNG produces at least the amount of entropy the RNG output may contain and the internal state of a hybrid deterministic RNG output contains fresh entropy but less than the output of RNG may contain.
6.2 Definition of Family ”Audit Data Storage (FAU_SAS)”

This section has been taken over from the certified (BSI-PP-0084-2014) Smartcard IC Platform Protection Profile [10]. To define the security functional requirements of the TOE an additional family (“Audit Data Storage (FAU_SAS)”) of the Class “Security audit (FAU)” is defined here. This family describes the functional requirements for the storage of audit data. It has a more general approach than FAU_GEN, because it does not necessarily require the data to be generated by the TOE itself and because it does not give specific details of the content of the audit records.

6.2.1 Family behavior

This family defines functional requirements for the storage of audit data.

Component leveling:

```
FAU_SAS Audit data storage                      1
```

Fig. 6.2: SAS Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_SAS</td>
<td>Requires the TOE to provide the possibility to store audit data.</td>
</tr>
<tr>
<td>Management: FAU_SAS.1</td>
<td>There are no management activities foreseen.</td>
</tr>
<tr>
<td>Audit: FAU_SAS.1</td>
<td>There are no actions defined to be auditable.</td>
</tr>
<tr>
<td>FAU_SAS.1</td>
<td>Audit storage.</td>
</tr>
<tr>
<td>Hierarchical to:</td>
<td>No other components.</td>
</tr>
<tr>
<td>Dependencies</td>
<td>No dependencies.</td>
</tr>
<tr>
<td>FAU_SAS.1.1</td>
<td>The TSF shall provide [assignment: list of subjects] with the capability to store [assignment: list of audit information] in the [assignment: type of persistent memory].</td>
</tr>
</tbody>
</table>

6.3 Definition of Family ”TOE emanation (FPT_EMSEC)”

This section has been taken over from the certified (BSI-PP-0055) Protection Profile Machine Readable Travel Document with ICAO Application, Basic Access Control [30]. The additional family FPT_EMSEC (TOE Emanation) of the Class FPT - ‘Protection of the TSF’ is defined here to describe the IT security functional requirements of the TOE. The TOE shall prevent attacks against the TOE and other secret data where the attack is based on external observable physical phenomena of the TOE. Examples of such attacks are evaluation of TOEs electromagnetic radiation, simple power analysis (SPA), differential power analysis (DPA), timing attacks, etc. This family describes the functional requirements for the limitation of intelligible emanations which are not directly addressed by any other component of Common Criteria part 2 [7].
6.3.1 Family behavior

This family defines requirements to mitigate intelligible emanations.

Component leveling:

![Fig. 6.3: EMSEC Component](image)

FPT_EMSEC TOE emanation has two constituents

FPT_EMSEC.1.1
Limit of emissions requires to not emit intelligible emissions enabling access to TSF data or user data.

FPT_EMSEC.1.2
Interface emanation requires not emit interface emanation enabling access to TSF data or user data.

Management: FPT_EMSEC.1
There are no management activities foreseen.

Audit: FPT_EMSEC.1
There are no actions defined to be auditable.

FPT_EMSEC TOE emanation
Hierarchical to: No other components.

Dependencies: No dependencies.

FPT_EMSEC.1.1 The TOE shall not emit [assignment: types of emissions] in excess of [assignment: specified limits] enabling access to [assignment: list of types of TSF data] and [assignment: list of types of user data].

FPT_EMSEC.1.2 The TSF shall ensure [assignment: type of users] are unable to use the following interface [assignment: type of connection] to gain access to [assignment: list of types of TSF data] and [assignment: list of types of user data].
7 Security Requirements (ASE_REQ)

This section states the security functional requirements for the TOE. For readability requirements are arranged into groups taken from [5]. The permitted operations (assignment, iteration, selection and refinement) of the SFRs taken from Common Criteria [7] are printed in bold. Completed operations related to the PP are additionally marked within [] where assignments are additionally marked with the keyword "assignment".

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core with Logical Channels (CoreG_LC)</td>
<td>The CoreG_LC contains the requirements concerning the runtime environment of the Java Card System implementing logical channels. This includes the firewall policy and the requirements related to the Java Card API. Logical channels are a Java Card specification version 2.2 feature. This group is the union of requirements from the Core (CoreG) and the logical channels (LCG) groups defined in [15] (cf. Java Card System Protection Profile Collection [5]).</td>
</tr>
<tr>
<td>Installation (InstG)</td>
<td>The InstG contains the security requirements concerning the installation of post-issuance applications. It does not address card management issues in the broad sense, but only those security aspects of the installation procedure that are related to applet execution.</td>
</tr>
<tr>
<td>Applet deletion (ADELG)</td>
<td>The ADELG contains the security requirements for erasing installed applets from the card, a feature introduced in Java Card specification version 2.2.</td>
</tr>
<tr>
<td>Remote Method Invocation (RMIG)</td>
<td>The RMIG contains the security requirements for the remote method invocation feature, which provides a new protocol of communication between the terminal and the applets. This was introduced in Java Card specification version 2.2. but is not supported by the TOE.</td>
</tr>
<tr>
<td>Object deletion (ODELG)</td>
<td>The ODELG contains the security requirements for the object deletion capability. This provides a safe memory recovering mechanism. This is a Java Card specification version 2.2 feature.</td>
</tr>
<tr>
<td>Secure carrier (CarG)</td>
<td>The CarG group contains minimal requirements for secure downloading of applications on the card. This group contains the security requirements for preventing, in those configurations that do not support on-card static or dynamic bytecode verification, the installation of a package that has not been bytecode verified, or that has been modified after bytecode verification.</td>
</tr>
<tr>
<td>External Memory (EMG)</td>
<td>The EMG group contains security requirements for the management of external memory, which is an optional Java Card feature not supported by the TOE.</td>
</tr>
</tbody>
</table>
Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the TOE include people or institutions (like the applet developer, the card issuer, the verification authority), hardware (like the CAD where the card is inserted or the PCD) and software components (like the application packages installed on the card). Some of the users may just be aliases for other users. For instance, the verification authority in charge of the bytecode verification of the applications may be just an alias for the card issuer. Subjects (prefixed with an "S") are described in the following table:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.ADEL</td>
<td>The applet deletion manager which also acts on behalf of the card issuer. It may be an applet ([4], §11), but its role asks anyway for a specific treatment from the security viewpoint. This subject is unique and is involved in the ADEL security policy.</td>
</tr>
<tr>
<td>S.CAD</td>
<td>The CAD represents the actor that requests services by issuing commands to the card. It also plays the role of the off-card entity that communicates with the S.INSTALLER.</td>
</tr>
<tr>
<td>S.INSTALLER</td>
<td>The installer is the on-card entity which acts on behalf of the card issuer. This subject is involved in the loading of packages and installation of applets.</td>
</tr>
<tr>
<td>S.JCRE</td>
<td>The runtime environment under which Java programs in a smart card are executed.</td>
</tr>
<tr>
<td>S.JCVM</td>
<td>The bytecode interpreter that enforces the firewall at runtime.</td>
</tr>
<tr>
<td>S.LOCAL</td>
<td>Operand stack of a JCVM frame, or local variable of a JCVM frame containing an object or an array of references.</td>
</tr>
<tr>
<td>S.SD</td>
<td>A GlobalPlatform Security Domain representing on the card a off-card entity. This entity can be the Issuer, an Application Provider, the Controlling Authority or the Verification Authority.</td>
</tr>
<tr>
<td>S.MEMBER</td>
<td>Any object’s field, static field or array position.</td>
</tr>
<tr>
<td>S.SBNativeCode</td>
<td>The third party native code executed via the Secure Box mechanism.</td>
</tr>
</tbody>
</table>
Tab. 7.2: Java Card Subject Descriptions

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.PACKAGE</td>
<td>A package is a namespace within the Java programming language that may contain classes and interfaces, and in the context of Java Card technology, it defines either a user library, or one or several applets.</td>
</tr>
<tr>
<td>S.OSU</td>
<td>OSU provides secure functionality to update the TOE operating system with an image created by a trusted off-card entity (S.UpdateImageCreator)</td>
</tr>
<tr>
<td>S.UpdateImageCreator</td>
<td>The off-card Update Image Creator ensures that the image is signed and transferred encrypted to the device and is not disclosed during the creation and transfer. The keys used for signing and encrypting the image are kept confidential.</td>
</tr>
<tr>
<td>S.Customer</td>
<td>The subject that has the Customer Configuration Token.</td>
</tr>
<tr>
<td>S.NXP</td>
<td>The subject that has the NXP Configuration Token.</td>
</tr>
<tr>
<td>S.ACAdmin</td>
<td>The subject that has the Attack Counter Token Key.</td>
</tr>
<tr>
<td>S.ConfigurationMechanism</td>
<td>On card entity which can read and write configuration items.</td>
</tr>
</tbody>
</table>

Tab. 7.3: Object Groups

<table>
<thead>
<tr>
<th>Objects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.APPLET</td>
<td>Any installed applet, its code and data.</td>
</tr>
<tr>
<td>O.CODE_PKG</td>
<td>The code of a package, including all linking information. On the Java Card platform, a package is the installation unit.</td>
</tr>
<tr>
<td>O.SB_Content</td>
<td>The code and data elements of the native code library residing in the Secure Box.</td>
</tr>
<tr>
<td>O.NON_SB_Content</td>
<td>Any code and data elements not assigned to the native code library residing in the Secure Box.</td>
</tr>
<tr>
<td>O.SB_SFR</td>
<td>The pool of Special Function Registers</td>
</tr>
<tr>
<td>O.JAVAOBJECT</td>
<td>Java class instance or array. It should be noticed that KEYS, PIN, arrays and applet instances are specific objects in the Java programming language.</td>
</tr>
</tbody>
</table>

Information (prefixed with an "I") is described in the following table:

<table>
<thead>
<tr>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.DATA</td>
<td>JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned instances of APDU class and byte array for install method.</td>
</tr>
<tr>
<td>Security attributes</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Active Applets</td>
<td>The set of the active applets’ AIDs. An active applet is an applet that is selected on at least one of the logical channels.</td>
</tr>
<tr>
<td>Applet Selection Status</td>
<td>"Selected" or "Deselected".</td>
</tr>
<tr>
<td>Applet’s Version Number</td>
<td>The version number of an applet (package) indicated in the export file.</td>
</tr>
<tr>
<td>Attack Counter</td>
<td>Attack Counter</td>
</tr>
<tr>
<td>Context</td>
<td>Package AID or "Java Card RE ".</td>
</tr>
<tr>
<td>Currently Active Context</td>
<td>Package AID or "Java Card RE".</td>
</tr>
<tr>
<td>Current Sequence Number</td>
<td>The current number of a valid OS installed on the TOE or current number of a OS update step during update process.</td>
</tr>
<tr>
<td>Dependent Package AID</td>
<td>Allows the retrieval of the Package AID and applet's version number.</td>
</tr>
<tr>
<td>Final Sequence Number</td>
<td>The sequence number which is reached after completing the update process. This is uniquely linked to the JCOP version of the final TOE.</td>
</tr>
<tr>
<td>Image Type</td>
<td>Type of D.UPDATE_IMAGE. Can be either Upgrade, Self Update or Downgrade.</td>
</tr>
<tr>
<td>LC Selection Status</td>
<td>Multiselectable, Non-multiselectable or "None".</td>
</tr>
<tr>
<td>LifeTime</td>
<td>CLEAR_ON_DESELECT or PERSISTENT. ¹</td>
</tr>
<tr>
<td>Owner</td>
<td>The Owner of an object is either the applet instance that created the object or the package (library) where it has been defined (these latter objects can only be arrays that initialize static fields of the package). The owner of a remote object is the applet instance that created the object.</td>
</tr>
<tr>
<td>Package AID</td>
<td>The AID of each package indicated in the export file.</td>
</tr>
<tr>
<td>Reference Sequence Number</td>
<td>Is the sequence number which the TOE has before the update process is started. This is uniquely linked to the JCOP version of the initial TOE.</td>
</tr>
<tr>
<td>Registered Applets</td>
<td>The set of AID of the applet instances registered on the card.</td>
</tr>
<tr>
<td>Remote</td>
<td>An object is Remote if it is an instance of a class that directly or indirectly implements the interface java.rmi.Remote. It applies only if the TOE provides JCRMI functionality.</td>
</tr>
</tbody>
</table>

¹Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed only when the Currently Active Context is the object's context.
<table>
<thead>
<tr>
<th>Security attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident Packages</td>
<td>The set of AIDs of the packages already loaded on the card.</td>
</tr>
<tr>
<td>Selected Applet Context</td>
<td>Package AID or "None".</td>
</tr>
<tr>
<td>Sharing</td>
<td>Standards, SIO, Java Card RE Entry Point or global array.</td>
</tr>
<tr>
<td>Static References</td>
<td>Static fields of a package may contain references to objects. The Static References attribute records those references.</td>
</tr>
<tr>
<td>Address Space</td>
<td>Accessible memory portion.</td>
</tr>
<tr>
<td>Verification Key</td>
<td>Key to verify integrity of D.UPDATE_IMAGE.</td>
</tr>
<tr>
<td>Decryption Key</td>
<td>Key for decrypting D.UPDATE_IMAGE.</td>
</tr>
<tr>
<td>Customer Configuration Token generation key</td>
<td>The customer key to generate tokens for product configuration.</td>
</tr>
<tr>
<td>NXP Configuration Token generation key</td>
<td>The NXP key to generate tokens for product configuration.</td>
</tr>
<tr>
<td>Attack Counter Token Key</td>
<td>The key to generate tokens for Attack Counter Reset.</td>
</tr>
<tr>
<td>NXP Configuration Access</td>
<td>The NXP Configuration Access can either be enabled or disabled.</td>
</tr>
<tr>
<td>Customer Configuration Access</td>
<td>The Customer Configuration Access can either be enabled or disabled.</td>
</tr>
<tr>
<td>access privilege</td>
<td>For each configuration item the access privilege attribute defines who (Customer and/or NXP) is allowed to read/write the item.</td>
</tr>
<tr>
<td>Key Set</td>
<td>Key Set for Secure Channel.</td>
</tr>
<tr>
<td>Received Sequence Number</td>
<td>Sequence number of the uploaded D.UPDATE_IMAGE.</td>
</tr>
<tr>
<td>Security Level</td>
<td>Secure Communication Security Level defined in Section 10.6 of [26].</td>
</tr>
<tr>
<td>Session Key</td>
<td>Secure Channel's session key.</td>
</tr>
<tr>
<td>Sequence Counter</td>
<td>Secure Channel Session's Sequence Counter.</td>
</tr>
<tr>
<td>ICV</td>
<td>Secure Channel Session’s ICV.</td>
</tr>
<tr>
<td>CPU Mode</td>
<td>The execution mode of the CPU. Can be either Application Privileged Mode, Application Unprivileged Mode and Shared Mode. The modes Service Privileged and Service Unprivileged are reserved to the Security Software execution.</td>
</tr>
<tr>
<td>MMU Segment Table</td>
<td>Defines the memory areas which can be accessed for read/write/execute.</td>
</tr>
<tr>
<td>Special Function Registers</td>
<td>Special Function Registers allow to set operation modes of functional blocks of the hardware.</td>
</tr>
<tr>
<td>Card Life Cycle</td>
<td>defined in Section 5.1.1 of [26].</td>
</tr>
<tr>
<td>Privileges</td>
<td>defined in Section 6.6.1 of [26].</td>
</tr>
<tr>
<td>Life-cycle Status</td>
<td>defined in Section 5.3.2 of [26].</td>
</tr>
</tbody>
</table>
Operations (prefixed with "OP") are described in the following table. Each operation has parameters given between brackets, among which there is the "accessed object", the first one, when applicable. Parameters may be seen as security attributes that are under the control of the subject performing the operation.

<table>
<thead>
<tr>
<th>Operations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP.ARRAY_ACCESS (O.JAVAOBJECT, field)</td>
<td>Read/Write an array component.</td>
</tr>
<tr>
<td>OP.ARRAY_LENGTH (O.JAVAOBJECT, field)</td>
<td>Get length of an array component.</td>
</tr>
<tr>
<td>OP.ARRAY_AASTORE (O.JAVAOBJECT, field)</td>
<td>Store into reference array component.</td>
</tr>
<tr>
<td>OP.CREATE (Sharing, LifeTime)(*)</td>
<td>Creation of an object (new or makeTransient call).</td>
</tr>
<tr>
<td>OP.DELETE_APPLET (O.APPLET,...)</td>
<td>Delete an installed applet and its objects, either logically or physically.</td>
</tr>
<tr>
<td>OP.DELETE_PKG (O.Code_PKG,...)</td>
<td>Delete a package, either logically or physically.</td>
</tr>
<tr>
<td>OP.DELETE_PKG_APPLET (O.Code_PKG,...)</td>
<td>Delete a package and its installed applets, either logically or physically.</td>
</tr>
<tr>
<td>OP.INSTANCE_FIELD (O.JAVAOBJECT, field)</td>
<td>Read/Write a field of an instance of a class in the Java programming language.</td>
</tr>
<tr>
<td>OP.INVK_VIRTUAL (O.JAVAOBJECT, method, arg1,...)</td>
<td>Invoke a virtual method (either on a class instance or an array object).</td>
</tr>
<tr>
<td>OP.INVK_INTERFACE (O.JAVAOBJECT, method, arg1,...)</td>
<td>Invoke an interface method.</td>
</tr>
<tr>
<td>OP.JAVA (...)</td>
<td>Any access in the sense of [4], §6.2.8. It stands for one of the operations:</td>
</tr>
<tr>
<td>OP.PUT (S1,S2,I)</td>
<td>Transfer a piece of information I from S1 to S2.</td>
</tr>
<tr>
<td>OP.THROW (O.JAVAOBJECT)</td>
<td>Throwing of an object (athrow, see [4], §6.2.8.7).</td>
</tr>
</tbody>
</table>

\(^2\)For this operation, there is no accessed object. This rule enforces that shareable transient objects are not allowed. For instance, during the creation of an object, the JavaCardClass attribute's value is chosen by the creator.
7.1 Security Functional Requirements

7.1.1 COREG LC Security Functional Requirements

The list of SFRs of this category are taken from [5].

7.1.1.1 Firewall Policy

FDP_ACC.2[FIREWALL]

Hierarchical-To: FDP_ACC.1 Subset access control

Dependencies: FDP_ACF.1 Security attribute based access control

FDP_ACC.2.1[FIREWALL]

The TSF shall enforce the [assignment: FIREWALL access control SFP] on [assignment: S PACKAGE, S JCRE, S JCVM, O JAVAOBJECT] and all operations among subjects and objects covered by the SFP.

Refinement: The operations involved in the policy are:

- **OP.CREATE(Sharing, LifeTime)(*)**,
- **OP.INVK_INTERFACE(O JAVAOBJECT, method, arg1, ...)**,
- **OP.INVK_VIRTUAL(O JAVAOBJECT, method, arg1, ...)**,
- **OP.JAVA(...)**,
- **OP.THROW(O JAVAOBJECT)**,
- **OP.TYPE_ACCESS(O JAVAOBJECT, class)**,
- **OP.ARRAY_LENGTH(O JAVAOBJECT, field)**,
- **OP.ARRAY_AASTORE(O JAVAOBJECT, field)**.

FDP_ACC.2.2[FIREWALL]

The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.
It should be noticed that accessing array’s components of a static array, and more generally fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1[FIREWALL] Security attribute based access control (FIREWALL)

Hierarchical-To
No other components.

Dependencies
FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation

FDP_ACF.1.1[FIREWALL]

The TSF shall enforce the assignment: FIREWALL access control SFP to objects based on the following assignment:

<table>
<thead>
<tr>
<th>Subject/Object</th>
<th>Security attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.PACKAGE</td>
<td>LC Selection Status</td>
</tr>
<tr>
<td>S.JCVM</td>
<td>Active Applets, Currently Active Context</td>
</tr>
<tr>
<td>S.JCRE</td>
<td>Selected Applet Context</td>
</tr>
<tr>
<td>O.JAVAOBJECT</td>
<td>Sharing, Context, LifeTime</td>
</tr>
</tbody>
</table>

FDP_ACF.1.2[FIREWALL]

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- **R.JAVA.1 ([4], §6.2.8):** S.PACKAGE may freely perform
 - OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1, ...)
 - OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1, ...)
 - OP.THROW(O.JAVAOBJECT)
 - OP.TYPE_ACCESS(O.JAVAOBJECT, class)
 upon any O.JAVAOBJECT whose Sharing attribute has value "JCRE entry point" or "global array".

- **R.JAVA.2 ([4], §6.2.8):** S.PACKAGE may freely perform
 - OP.ARRAY_ACCESS
 - OP.INSTANCE_FIELD
 - OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1, ...)
 - OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1, ...)
 - OP.THROW(O.JAVAOBJECT)
 upon any O.JAVAOBJECT whose Sharing attribute has value "Standard" and whose LifeTime attribute has value "PERSISTENT" only if O.JAVAOBJECT’s Context attribute has the same value as the active context.

- **R.JAVA.3 ([4], §6.2.8.10):** S.PACKAGE may perform
 - OP.TYPE_ACCESS(O.JAVAOBJECT, class)
 upon an O.JAVAOBJECT whose Sharing attribute has value "SIO" only if O.JAVAOBJECT is being cast into (checkcast) or is being verified as being an instance of (instanceof) an interface that extends the Shareable interface.
• R.JAVA.4 ([4], §6.2.8.6): S.PACKAGE may perform
 – OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1, ...)
upon an O.JAVAOBJECT whose Sharing attribute has the value "SIO", and whose
Context attribute has the value "Package AID", only if the invoked interface method
extends the Shareable interface and one of the following conditions applies:
 a) The value of the attribute LC Selection Status of the package whose AID is
 "Package AID" is "Multiselectable",
 b) The value of the attribute LC Selection Status of the package whose AID is
 "Package AID" is "Non-multiselectable", and either "Package AID" is the value
 of the currently selected applet or otherwise "Package AID" does not occur in
 the attribute Active Applets.
• R.JAVA.5: S.PACKAGE may perform
 – OP.CREATE(Sharing, LifeTime)(*)
upon O.JAVAOBJECT only if the value of the Sharing parameter is "Standard" or
"SIO".
• R.JAVA.6 ([4], §6.2.8.10): S.PACKAGE may freely perform
 – OP.ARRAY_ACCESS(O.JAVAOBJECT, field)
 – OP.ARRAY_LENGTH(O.JAVAOBJECT, field)
upon any O.JAVAOBJECT whose Sharing attribute has value "global array".

FDP_ACF.1.3[FIREWALL] The TSF shall explicitly authorise access of subjects to objects based on the following
additional rules: [assignment:
 • The subject S.JCRE can freely perform OP.JAVA(...) and OP.CREATE(Sharing,
 LifeTime)(*), with the exception given in FDP_ACF.1.4[FIREWALL], provided it is
 the Currently Active Context.
 • The only means that the subject S.JCVM shall provide for an application to execute
 native code is the invocation of a Java Card API method (through
 – OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1, ...)
 – OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1, ...))

FDP_ACF.1.4[FIREWALL] The TSF shall explicitly deny access of subjects to objects based on the following additional
rules: [assignment:
 • Any subject with OP.JAVA(...) upon an O.JAVAOBJECT whose LifeTime attribute
 has value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is not
 the same as the Selected Applet Context.
Any subject attempting to create an object by the means of OP.CREATE(Sharing, LifeTime)(*) and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context is not the same as the Selected Applet Context.

S.PACKAGE performing OP.ARRAY_AASTORE(O.JAVAOBJECT, field) of the reference of an O.JAVAOBJECT whose Sharing attribute has value "global array" or "Temporary JCRE entry point".

S.PACKAGE performing OP.PUTFIELD or OP.PUTSTATIC of the reference of an O.JAVAOBJECT whose Sharing attribute has value "global array" or "Temporary JCRE entry point".

AppNote FDP_ACF.1.4[FIREWALL]

The deletion of applets may render some O.JAVAOBJECT inaccessible, and the Java Card RE may be in charge of this aspect. This can be done, for instance, by ensuring that references to objects belonging to a deleted application are considered as a null reference.

In the case of an array type, fields are components of the array ([37], §2.14, §2.7.7), as well as the length; the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:

- Standard ones, whose both fields and methods are under the firewall policy,
- Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet communication,
- JCRE entry points (Temporary or Permanent), who have freely accessible methods but protected fields,
- Global arrays, having both unprotected fields (including components; refer to JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the object is owned by the applet instance within the Currently Active Context when the object is instantiated ([4], §6.1.3). An object is owned by an applet instance, by the JCRE or by the package library where it has been defined (these latter objects can only be arrays that initialize static fields of packages).

([4], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently selected Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java Card RE makes this applet the Selected Applet Context. The Java Card RE sends all APDU commands to the Selected Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the relevant aspect to the policy is the context (package AID) of the selected applet. In this policy, the "Selected Applet Context" is the AID of the selected package.
At any point in time, there is only one active context within the Java Card VM (this is called the Currently Active Context). It should be noticed that the invocation of static methods (or access to a static field) is not considered by this policy, as there are no firewall rules. They have no effect on the active context as well and the "acting package" is not the one to which the static method belongs to in this case.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition, introduces the possibility for an applet instance to be selected on multiple logical channels at the same time, or accepting other applets belonging to the same package being selected simultaneously. These applets are referred to as multiselectable applets. Applets that belong to a same package are either all multiselectable or not ([3], §2.2.5). Therefore, the selection mode can be regarded as an attribute of packages. No selection mode is defined for a library package.

An applet instance will be considered an active applet instance if it is currently selected in at least one logical channel. An applet instance is the currently selected applet instance only if it is processing the current command. There can only be one currently selected applet instance at a given time. ([4], §4).

FDP_IFC.1[JCVM]

Subset information flow control (JCVM)

Hierarchical-To: No other components.

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.1.1[JCVM]: The TSF shall enforce the [assignment: JCVM information flow control SFP] on [assignment: S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1,S2,l)].

AppNote

It should be noticed that references of temporary Java Card RE entry points, which cannot be stored in class variables, instance variables or array components, are transferred from the internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java Card RE owned exceptions) or Java Card RE invoked methods (such as the process(APDU apdu)); these are causes of OP.PUT(S1,S2,l) operations as well.

FDP_IFF.1[JCVM]

Simple security attributes (JCVM)

Hierarchical-To: No other components.

Dependencies: FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation

FDP_IFF.1.1[JCVM]: The TSF shall enforce the [assignment: JCVM information flow control SFP] based on the following types of subject and information security attributes [assignment: :

<table>
<thead>
<tr>
<th>Subject/Object</th>
<th>Security attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.JCVM</td>
<td>Currently Active Context</td>
</tr>
</tbody>
</table>
FDP_IFF.1.2[JCVM] The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [assignment:

- An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the Currently Active Context is "Java Card RE".
- other OP.PUT operations are allowed regardless of the Currently Active Context's value.

]

FDP_IFF.1.3[JCVM] The TSF shall enforce [assignment: no additional information flow control SFP rules].
FDP_IFF.1.4[JCVM] The TSF shall explicitly authorise an information flow based on the following rules: [assignment: none].
FDP_IFF.1.5[JCVM] The TSF shall explicitly deny an information flow based on the following rules: [assignment: none].

AppNote The storage of temporary Java Card RE-owned objects references is runtime-enforced ([4], §6.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native methods, the Java Card RE itself and possibly some API methods can be granted specific rights or limitations through the FDP_IFF.1.3[JCVM] to FDP_IFF.1.5[JCVM] elements. The way the Java Card virtual machine manages the transfer of values on the stack and local variables (returned values, uncaught exceptions) from and to internal registers is implementation dependent. For instance, a returned reference, depending on the implementation of the stack frame, may transit through an internal register prior to being pushed on the stack of the invoker. The returned bytecode would cause more than one OP.PUT operation under this scheme.

FDP_RIP.1[OBJECTS] Subset residual information protection (OBJECTS)
Hierarchical-To No other components.
Dependencies No dependencies.
FDP_RIP.1.1[OBJECTS] The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: allocation of the resource to] the following objects: [assignment: class instances and arrays].

AppNote The semantics of the Java programming language requires for any object field and array position to be initialized with default values when the resource is allocated [37], §2.5.1.
FMT_MSA.1[JCRE] Management of security attributes (JCRE)

Hierarchical-To No other components.

Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1[JCRE] The TSF shall enforce the [assignment: FIREWALL access control SFP] to restrict the ability to [selection: modify] the security attributes [assignment: Selected Applet Context] to [assignment: S.JCRE].

AppNote The modification of the Selected Applet Context should be performed in accordance with the rules given in [4], §4 and [3], §3.4.

FMT_MSA.1[JCVM] Management of security attributes (JCVM)

Hierarchical-To No other components.

Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1[JCVM] The TSF shall enforce the [assignment: FIREWALL access control SFP and the JCVM information flow control SFP] to restrict the ability to [selection: modify] the security attributes [assignment: Currently Active Context and Active Applets] to [assignment: S.JCVM].

AppNote The modification of the Currently Active Context should be performed in accordance with the rules given in [4], §4 and [3], §3.4.

FMT_MSA.2[FIREFWALL-JCVM] Secure security attributes (FIREFWALL-JCVM)

Hierarchical-To No other components.

Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.2.1[FIREFWALL-JCVM] The TSF shall ensure that only secure values are accepted for [assignment: all the security attributes of subjects and objects defined in the FIREWALL access control SFP and the JCVM information flow control SFP].

AppNote The following rules are given as examples only. For instance, the last two rules are motivated by the fact that the Java Card API defines only transient arrays factory methods. Future versions may allow the creation of transient objects belonging to arbitrary classes; such evolution will naturally change the range of “secure values” for this component.
• The Context attribute of an O.JAVAOBJECT must correspond to that of an installed applet or be "Java Card RE".

• An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global array necessarily has "Java Card RE" as the value for its Context security attribute.

• An O.JAVAOBJECT whose Sharing attribute value is a global array necessarily has "array of primitive type" as a JavaCardClass security attribute’s value.

• Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a PERSISTENT-LifeTime attribute’s value.

• Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an array type as JavaCardClass attribute’s value.

FMT_MSA.3[FIREWALL] Static attribute initialisation (FIREWALL)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[FIREWALL] The TSF shall enforce the [assignment: FIREWALL access control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[FIREWALLEditoriallyRefined] The TSF shall not allow [assignment: any role] to specify alternative initial values to override the default values when an object or information is created.
FMT_MSA.3.2[FIREWALL] The TSF shall not allow the [assignment: none] to specify alternative initial values to override the default values when an object or information is created.
AppNote FMT_MSA.3.1[FIREWALL]
• Objects’ security attributes of the access control policy are created and initialized at the creation of the object or the subject. Afterwards, these attributes are no longer mutable (FMT_MSA.1[JCRE]). At the creation of an object (OP.CREATE), the newly created object, assuming that the FIREWALL access control SFP permits the operation, gets its Lifetime and Sharing attributes from the parameters of the operation; on the contrary, its Context attribute has a default value, which is its creator’s Context attribute and AID respectively ([4], §6.1.3). There is one default value for the Selected Applet Context that is the default applet identifier’s Context, and one default value for the Currently Active Context that is “Java Card RE”.

• The knowledge of which reference corresponds to a temporary entry point object or a global array and which does not is solely available to the Java Card RE (and the Java Card virtual machine).

FMT_MSA.3.2[FIREWALL Editorially Refined]
• The intent is that none of the identified roles has privileges with regard to the default values of the security attributes. It should be noticed that creation of objects is an operation controlled by the FIREWALL access control SFP. The operation shall fail anyway if the created object would have had security attributes whose value violates FMT_MSA.2.1[FIREWALL-JCVM].

FMT_MSA.3[JCMV] Static attribute initialisation (JCVM)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[JCMV] The TSF shall enforce the [assignment: JCVM information flow control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[JCMV-EditoriallyRefined] The TSF shall not allow [assignment: any role] to specify alternative initial values to override the default values when an object or information is created.

FMT_SMF.1 Specification of Management Functions
Hierarchical-To No other components.
Dependencies No dependencies.
FMT_SMF.1.1 The TSF shall be capable of performing the following management functions: [assignment:

• modify the Currently Active Context, the Selected Applet Context and the Active Applets

]
FMT_SMR.1.2 The TSF shall be able to associate users with roles.

7.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API. The whole set of cryptographic algorithms is generally not implemented because of limited memory resources and/or limitations due to exportation. Therefore, the following requirements only apply to the implemented subset. It should be noticed that the execution of the additional native code is not within the TSF. Nevertheless, access to API native methods from the Java Card System is controlled by TSF because there is no difference between native and interpreted methods in their interface or invocation mechanism.

FCS_CKM.1 Cryptographic key generation

Hierarchical-To No other components.

Dependencies [FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation] FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [assignment: JCOP RNG] and specified cryptographic key sizes [assignment: DES: Key lengths - LENGTH_DES3_2KEY, LENGTH_DES3_3KEY bit, AES: Key lengths - LENGTH_AES_128, LENGTH_AES_192, LENGTH_AES_256 bit RSA-CRT and RSA: Any length that is a multiple of 32 from 512 to 2048 bits, ECC: Key lengths - Any length from 128 to 528 bits] that meet the following: [assignment: [1]].

AppNote

• The keys can be generated and diversified in accordance with [2] specification in classes KeyPair (at least session key generation) and RandomData.
• This component shall be instantiated according to the version of the Java Card API applying to the security target and the implemented algorithms ([2]).

AppNote

• The keys can be generated and diversified in accordance with [33] specification in class KeyBuilderX.
• This component shall be instantiated according to the version of the Java Card API applying to the security target and the implemented algorithms ([33]).

FCS_CKM.4 Cryptographic key destruction

Hierarchical-To No other components.
Dependencies

[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]

FCS_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [assignment: physically overwriting the keys in a randomized manner] that meets the following: [assignment: none].

AppNote

- The keys are reset as specified in [2] Key class, with the method clearKey(). Any access to a cleared key for ciphering or signing shall throw an exception.
- This component shall be instantiated according to the version of the Java Card API applicable to the security target and the implemented algorithms ([2]).

FCS_COP.1

Cryptographic operation

Hierarchical-To

No other components.

Dependencies

[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction.

FCS_COP.1.1[GCM]

The TSF shall perform [assignment: decryption and encryption] in accordance with a specified cryptographic algorithm [assignment: AES in GCM mode] and cryptographic key size [assignment: 128 bits] that meets the following: [assignment: FIPS 197 [35], NIST Special Publication 800-38D Recommendation for BlockCipher [36]].

FCS_COP.1.1[TripleDES]

The TSF shall perform [assignment: data encryption and decryption] in accordance with a specified cryptographic algorithm [assignment:

- ALG_DES_CBC_ISO9797_M1
- ALG_DES_CBC_ISO9797_M2
- ALG_DES_CBC_NOPAD
- ALG_DES_ECB_ISO9797_M1
- ALG_DES_ECB_ISO9797_M2
- ALG_DES_ECB_NOPAD
- ALG_DES_CBC_PKCS5
- ALG_DES_ECB_PKCS5

] and cryptographic key sizes [assignment: LENGTH_DES3_2KEY, LENGTH_DES3_3KEY bit] that meet the following: [assignment: for ALG_DES_ECB_ISO9797_M2 see Java Card API Spec [2], for the rest see both [2] and JCOPX API [33]].

FCS_COP.1.1[AES]

The TSF shall perform [assignment: data encryption and decryption] in accordance with a specified cryptographic algorithm [assignment:
• ALG_AES_BLOCK_128_CBC_NOPAD
• ALG_AES_BLOCK_128_CBC_NOPAD_STANDARD
• ALG_AES_BLOCK_128_ECB_NOPAD
• ALG_AES_CBC_ISO9797_M1
• ALG_AES_CBC_ISO9797_M2
• ALG_AES_CBC_ISO9797_M2_STANDARD
• ALG_AES_ECB_ISO9797_M1
• ALG_AES_ECB_ISO9797_M2
• ALG_AES_CBC_PKCS5
• ALG_AES_ECB_PKCS5

} and cryptographic key sizes [assignment:

• LENGTH_AES_128
• LENGTH_AES_192
• LENGTH_AES_256

} that meet the following: [assignment:

• ALG_AES_BLOCK_128_CBC_NOPAD_STANDARD
• ALG_AES_CBC_ISO9797_M2_STANDARD

see API specified in JCOPX [33], for the rest see Java Card API Spec [2].

FCS_COP.1.1[RSACipher] The TSF shall perform [assignment: data encryption and decryption] in accordance with a specified cryptographic algorithm [assignment: ALG_RSA_NOPAD, ALG_RSA_PKCS1, ALG_RSA_PKCS1_OAEP] and cryptographic key sizes [assignment: Any key length that is a multiple of 32 between 512 and 2048 bits] that meet the following: [assignment: Java Card API Spec [2] and for the 32 bit step range see API specified in JCOPX [33]].

FCS_COP.1.1[ECDH_P1363] The TSF shall perform [assignment: Diffie-Hellman Key Agreement] in accordance with a specified cryptographic algorithm [assignment:

• ALG_EC_SVDP_DH
• ALG_EC_SVDP_DH_KDF
• ALG_EC_SVDP_DH_PLAIN
• ALG_EC_SVDP_DHC
• ALG_EC_SVDP_DHC_KDF
• ALG_EC_SVDP_DHC_PLAIN
• ALG_EC_SVDP_DH_PLAIN_XY

} and cryptographic key sizes [assignment:
• LENGTH_EC_FP_224
• LENGTH_EC_FP_256
• LENGTH_EC_FP_384
• LENGTH_EC_FP_521

and from 224 bit to 528 bit in 1 bit steps] that meet the following: [assignment:

• Java Card API Spec [2]
• ALG_EC_SVDP_DH.PLAIN_XY 1 bit step range key size in API specified in JCOPX [33]

FCS_COP.1.1[DESMAC] The TSF shall perform [assignment: MAC generation and verification] in accordance with a specified cryptographic algorithm [assignment: Triple-DES in outer CBC for Mode:

• ALG_DES_MAC4_ISO9797_1_M1_ALG3
• ALG_DES_MAC4_ISO9797_1_M2_ALG3
• ALG_DES_MAC4_ISO9797_M1
• ALG_DES_MAC4_ISO9797_M2
• ALG_DES_MAC8_ISO9797_1_M1_ALG3
• ALG_DES_MAC8_ISO9797_1_M2_ALG3
• ALG_DES_MAC8_ISO9797_M1
• ALG_DES_MAC8_ISO9797_M2
• ALG_DES_MAC8_NOPAD
• ALG_DES_MAC4_PKCS5
• ALG_DES_MAC8_PKCS5

] and cryptographic key sizes [assignment:

• LENGTH_DES3_2KEY
• LENGTH_DES3_3KEY]

] that meet the following: [assignment:

• Java Card API Spec [2]
• JCOPX API [33]

].

FCS_COP.1.1[AESMAC] The TSF shall perform [assignment: 16 byte MAC generation and verification] in accordance with a specified cryptographic algorithm [assignment: AES in CBC Mode ALG_AES_MAC_128_NOPAD] and cryptographic key sizes [assignment: LENGTH_AES_128, LENGTH_AES_192 and LENGTH_AES_256 bit] that meet the following: [assignment: Java Card API Spec [2]].
FCS_COP.1.1[RSASignaturePKCS1] The TSF shall perform [assignment: digital signature generation and verification] in accordance with a specified cryptographic algorithm [assignment:

- ALG_RSA_SHA_224_PKCS1
- ALG_RSA_SHA_224_PKCS1_PSS
- ALG_RSA_SHA_256_PKCS1
- ALG_RSA_SHA_256_PKCS1_PSS
- ALG_RSA_SHA_384_PKCS1
- ALG_RSA_SHA_384_PKCS1_PSS
- ALG_RSA_SHA_512_PKCS1
- ALG_RSA_SHA_512_PKCS1_PSS
- SIG_CIPHER_RSA in combination
 - MessageDigest.ALG_SHA_256
 - MessageDigest.ALG_SHA_384
 - MessageDigest.ALG_SHA_512
 - and in combination with Cipher.PAD_PKCS1_OAEP
]

and cryptographic key sizes [assignment: Any key length that is a multiple of 32 between 512 and 2048 bits] that meet the following: [assignment:

- Java Card API Spec [2]
- 32 bit step range see API specified in JCOPX [33]
].

FCS_COP.1.1[ECSignature] The TSF shall perform [assignment: digital signature generation and verification] in accordance with a specified cryptographic algorithm [assignment:

- ALG_ECDSA_SHA_224
- ALG_ECDSA_SHA_256
- ALG_ECDSA_SHA_384
- ALG_ECDSA_SHA_512
- SIG_CIPHER_ECDSA in combination with
 - MessageDigest.ALG_SHA_256
 - MessageDigest.ALG_SHA_384
 - MessageDigest.ALG_SHA_512
]

and cryptographic key sizes [assignment:

- LENGTH_EC_FP_128
]
• LENGTH_EC_FP_160
• LENGTH_EC_FP_192
• LENGTH_EC_FP_224
• LENGTH_EC_FP_256
• LENGTH_EC_FP_384
• LENGTH_EC_FP_521
• from 128 bit to 528 bit in 1 bit steps

] that meet the following [assignment:

• Java Card API Spec [2]
• 1 bit step range key size see API specified in JCOPX [33]

].

FCS_COP.1.1[AES_CMAC] The TSF shall perform [assignment: CMAC generation and verification] in accordance with a specified cryptographic algorithm [assignment:

• ALG_AES_CMAC16
• SIG_CIPHER_AES_CMAC16
• ALG_AES_CMAC16_STANDARD

] and cryptographic key sizes [assignment:

• LENGTH_AES_128
• LENGTH_AES_192
• LENGTH_AES_256

] that meet the following: [assignment:

• Java Card API Spec [2]
• JCOPX API specified in [33]

].

FCS_COP.1.1[HMAC] The TSF shall perform [assignment: HMAC generation and verification] in accordance with a specified cryptographic algorithm [assignment:

3Due to mathematical weakness only resistant against AVA_VAN.5 for temporary data (e.g. as used for generating session keys), but not if repeatedly applied to the same input data.
• ALG_HMAC_SHA_256
• ALG_HMAC_SHA_384
• ALG_HMAC_SHA_512

] and cryptographic key sizes [assignment:

• LENGTH_SHA_256
• LENGTH_SHA_384
• LENGTH_SHA_512

] that meet the following: [assignment:

• Java Card API Spec [2]
• JCOPX API specified in [33]

].

FCS_COP.1.1[TDES_CMAC] The TSF shall perform [assignment: message authentication and verification] in accordance with a specified cryptographic algorithm [assignment: ALG_DES_CMAC8, SIG_CIPHER_DES_CMAC8] and cryptographic key sizes [assignment: LENGTH_DES3_2KEY and LENGTH_DES3_3KEY bit] that meet the following: [assignment: see API specified in JCOPX [33]].

FCS_COP.1.1[DAP] The TSF shall perform [assignment: verification of the DAP signature attached to Executable Load Applications] in accordance with a specified cryptographic algorithm [assignment: ALG_RSA_SHA_PKCS1, ALG_ECDSA_SHA_256] and cryptographic key sizes [assignment: LENGTH_RSA_1024, LENGTH_EC_FP_256] that meet the following: [assignment: GP Spec [24] and JCOPX API [33]].

FDP_RIP.1[ABORT] Subset residual information protection (ABORT)
Hierarchical-To No other components.
Dependencies No dependencies.

FDP_RIP.1.1[ABORT] The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: deallocation of the resource from] the following objects: [assignment: any reference to an object instance created during an aborted transaction].

AppNote The events that provoke the de-allocation of a transient object are described in [4], §5.1.

FDP_RIP.1[APDU] Subset residual information protection (APDU)
Hierarchical-To: No other components.

Dependencies: No dependencies.

FDP_RIP.1.1[APDU]

The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: allocation of the resource to] the following objects: [assignment: the APDU buffer].

AppNote

The allocation of a resource to the APDU buffer is typically performed as the result of a call to the process() method of an applet.

FDP_RIP.1[GlobalArray_Refined] Subset residual information protection (Global Array)

Hierarchical-To: No other components.

Dependencies: No dependencies.

FDP_RIP.1.1[GlobalArray_Refined]

The TSF shall ensure that any previous information content of a resource is made unavailable upon [selection: deallocation of the resource from] the applet as a result of returning from the process method to the following objects: [assignment: a user Global Array].

AppNote

An array resource is allocated when a call to the API method JCSystem.makeGlobalArray is performed. The Global Array is created as a transient JCRE Entry Point Object ensuring that reference to it cannot be retained by any application. On return from the method which called JCSystem.makeGlobalArray, the array is no longer available to any applet and is deleted and the memory in use by the array is cleared and reclaimed in the next object deletion cycle.

FDP_RIP.1[bArray] Subset residual information protection (bArray)

Hierarchical-To: No other components.

Dependencies: No dependencies.

FDP_RIP.1.1[bArray]

The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: deallocation of the resource from] the following objects: [assignment: the bArray object].

AppNote

A resource is allocated to the bArray object when a call to an applet's install() method is performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback mechanism (FDP_ROL.1.2[FIREWALL]): the scope of the rollback does not extend outside the execution of the install() method, and the de-allocation occurs precisely right after the return of it.
FDP_RIP.1[KEYS] Subset residual information protection (KEYS)
Hierarchical-To No other components.
Dependencies No dependencies.
FDP_RIP.1.1[KEYS] The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: deallocation of the resource from] the following objects: [assignment: the cryptographic buffer (D.CRYPTO)].

AppNote • The javacard.security and javacardx.crypto packages do provide secure interfaces to the cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key interface of [2].

FDP_RIP.1[TRANSIENT] Subset residual information protection (TRANSIENT)
Hierarchical-To No other components.
Dependencies No dependencies.
FDP_RIP.1.1[TRANSIENT] The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: deallocation of the resource from] the following objects: [assignment: any transient object].

AppNote • The events that provoke the de-allocation of any transient object are described in [4], §5.1.
• The clearing of CLEAR_ON_DESELECT objects is not necessarily performed when the owner of the objects is deselected. In the presence of multiselectable applet instances, CLEAR_ON_DESELECT memory segments may be attached to applets that are active in different logical channels. Multiselectable applet instances within a same package must share the transient memory segment if they are concurrently active ([4], §4.2.)

FDP_ROL.1[FIREWALL] Basic rollback (FIREWALL)
Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]
FDP_ROL.1.1[FIREWALL] The TSF shall enforce [assignment: the FIREWALL access control SFP and the JCVM information flow control SFP] to permit the rollback of the [assignment: operations OP.JAVA(...) and OP.CREATE(Sharing, LifeTime)(*)] on the [assignment: object O.JAVAOBJECT].
FDP_ROL.1.2[FIREWALL] The TSF shall permit operations to be rolled back within the [assignment: scope of a select(), deselect(), process(), install() or uninstall() call, notwithstanding the restrictions given in [4], §7.7, within the bounds of the Commit Capacity ([4], §7.8), and those described in [2]].

AppNote Transactions are a service offered by the APIs to applets. It is also used by some APIs to guarantee the atomicity of some operation. This mechanism is either implemented in Java Card platform or relies on the transaction mechanism offered by the underlying platform. Some operations of the API are not conditionally updated, as documented in [2] (see for instance, PIN-blocking, PIN-checking, update of Transient objects).

7.1.1.3 Card Security Management

FAU_ARP.1 Security alarms
Hierarchical-To No other components.
Dependencies FAU_SAA.1 Potential violation analysis

FAU_ARP.1.1 The TSF shall take [assignment: one of the following actions:

- throw an exception,
- lock the card session (after a predefined number of resetted sessions the card shall switch to Restricted Mode),
- reinitialize the Java Card System and its data,
- [assignment: response with error code to S.CAD]

] upon detection of a potential security violation.

Refinement The "potential security violation" stands for one of the following events:

- CAP: CAP file inconsistency (response with error code to S.CAD),
- LFC: applet life cycle inconsistency (throw an exception),
- CHP: card tearing (unexpected removal of the Card out of the CAD) and power failure (reset the card session),
- ABT: abort of a transaction in an unexpected context (throw an exception),
- FWL: violation of the Firewall or JCVM SFPs (throw an exception),
- RSC: unavailability of memory (throw an exception),
- OFL: array overflow (throw an exception),
- EDC: checksum mismatch of EDC arrays (throw an exception),
- assignment:
 - CHP: Abnormal environmental condition (Frequency, Voltage, Temperature) (reset the card session).
– Physical Tampering
 • CLC: Card Manager Life Cycle inconsistency (reset the card session).
 • CHP: General Fault Injection Detection (reset the card session)
– CHP: Memory defects (reset the card session),
– CHP: Integrity protected persistent data inconsistency (reset the card session),
– CHP: Integrity protected transient data inconsistency (reset the card session),
– Memory Access Violation
 • CHP: Others (reset the card session)

FDP_SDI.2 Stored data integrity monitoring and action
Hierarchical-To FDP_SDI.1 Stored data integrity monitoring
Dependencies No dependencies.
FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by the TSF for [assignment: integrity errors] on all objects, based on the following attributes: [assignment: integrity protected data].
FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [assignment: reset the card session for integrity errors].
Refinement The following data elements have the user data attribute “integrity protected data”:
 • D.APP_KEYs
 • D.PIN
 • D.TOE_IDENTIFIER
AppNote • Although no such requirement is mandatory in the Java Card specification, at least an exception shall be raised upon integrity errors detection on cryptographic keys, PIN values and their associated security attributes. Even if all the objects cannot be monitored, cryptographic keys and PIN objects shall be considered with particular attention by ST authors as they play a key role in the overall security.
• It is also recommended to monitor integrity errors in the code of the native applications and Java Card applets.
• For integrity sensitive application, their data shall be monitored (D.APP_I_DATA): applications may need to protect information against unexpected modifications, and explicitly control whether a piece of information has been changed between two accesses. For example, maintaining the integrity of an electronic purse’s balance is extremely important because this value represents real money. Its modification must be controlled, for illegal ones would denote an important failure of the payment system.
- A dedicated library could be implemented and made available to developers to achieve better security for specific objects, following the same pattern that already exists in cryptographic APIs, for instance.

FPR UNO.1 Unobservability

Hierarchical-To
No other components.

Dependencies
No dependencies.

FPR UNO.1.1
The TSF shall ensure that [assignment: all users] are unable to observe the operation [assignment: all operations] on [assignment: D.APP_KEYs, D.PIN] by [assignment: another user].

AppNote
The non-observability of operations on sensitive information such as keys appears as impossible to circumvent in the smart card world. The precise list of operations and objects is left unspecified, but should at least concern secret keys and PIN values when they exist on the card, as well as the cryptographic operations and comparisons performed on them.

FPT FLS.1 Failure with preservation of secure state

Hierarchical-To
No other components.

Dependencies
No dependencies.

FPT FLS.1.1
The TSF shall preserve a secure state when the following types of failures occur: [assignment: those associated to the potential security violations described in FAU ARP.1].

AppNote
The Java Card RE Context is the Current context when the Java Card VM begins running after a card reset ([4], §6.2.3) or after a proximity card (PICC) activation sequence ([4]). Behavior of the TOE on power loss and reset is described in [4], §3.6 and §7.1. Behavior of the TOE on RF signal loss is described in [4], §3.6.1.

FPT TDC.1 Inter-TSF basic TSF data consistency

Hierarchical-To
No other components.

Dependencies
No dependencies.

FPT TDC.1.1
The TSF shall provide the capability to consistently interpret [assignment: the CAP files, the bytecode and its data arguments] when shared between the TSF and another trusted IT product.
FPT_TDC.1.2 The TSF shall use [assignment:

- the rules defined in [3] specification
- the API tokens defined in the export files of reference implementation
- [assignment: none]

]. when interpreting the TSF data from another trusted IT product.

AppNote Concerning the interpretation of data between the TOE and the underlying Java Card platform, it is assumed that the TOE is developed consistently with the SCP functions, including memory management, I/O functions and cryptographic functions.

7.1.1.4 AID Management

FIA_ATD.1[AID] User attribute definition (AID)

Hierarchical-To No other components.

Dependencies No dependencies.

FIA_ATD.1.1[AID] The TSF shall maintain the following list of security attributes belonging to individual users: [assignment:

- Package AID,
- Applet’s Version Number,
- Registered Applets,
- Applet Selection Status ([4], §4.6)

].

Refinement "Individual users” stands for applets.

FIA_UID.2[AID] User identification before any action (AID)

Hierarchical-To FIA_UID.1 Timing of identification

Dependencies No dependencies.

FIA_UID.2.1[AID] The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

AppNote • By users here it must be understood the ones associated to the packages (or applets) that act as subjects of policies. In the Java Card System, every action is always performed by an identified user interpreted here as the currently selected applet or the package that is the subject’s owner. Means of identification are provided during the loading procedure of the package and the registration of applet instances.
The role Java Card RE defined in FMT_SMR.1 is attached to an IT security function rather than to a "use" of the CC terminology. The Java Card RE does not "identify" itself to the TOE, but it is part of it.

FIA_USB.1[AID]
User-subject binding (AID)

Hierarchical-To
No other components.

Dependencies
FIA_ATD.1 User attribute definition

FIA_USB.1.1[AID]
The TSF shall associate the following user security attributes with subjects acting on the behalf of that user: [assignment: Package AID].

FIA_USB.1.2[AID]
The TSF shall enforce the following rules on the initial association of user security attributes with subjects acting on the behalf of users: [assignment: Each uploaded package is associated with an unique Package AID].

FIA_USB.1.3[AID]
The TSF shall enforce the following rules governing changes to the user security attributes associated with subjects acting on the behalf of users: [assignment: The initially assigned Package AID is unchangeable].

AppNote
The user is the applet and the subject is the S.PACKAGE. The subject security attribute Context shall hold the user security attribute Package AID.

FMT_MTD.1[JCRE]
Management of TSF data (JCRE)

Hierarchical-To
No other components.

Dependencies
FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MTD.1.1[JCRE]
The TSF shall restrict the ability to [selection: modify] the [assignment: list of registered applets’ AIDs] to [assignment: S.JCRE].

AppNote
- The installer and the Java Card RE manage other TSF data such as the applet life cycle or CAP files, but this management is implementation specific. Objects in the Java programming language may also try to query AIDs of installed applets through the lookupAID(...) API method.

- The installer, applet deletion manager or even the card manager may be granted the right to modify the list of registered applets’ AIDs in specific implementations (possibly needed for installation and deletion; see #.DELETION and #.INSTALL).

FMT_MTD.3[JCRE]
Secure TSF data (JCRE)
Hierarchical-To No other components.

Dependencies FMT_MTD.1 Management of TSF data

FMT_MTD.3.1[JCRE] The TSF shall ensure that only secure values are accepted for [assignment: the registered applet AIDs].

7.1.2 INSTG Security Functional Requirements

The list of SFRs of this category are taken from [5]. The SFR FDP_ITC.2[INSTALLER] has been refined and is now part of the card management SFRs (FDP_ITC.2[CCM]) in section 7.1.6.

FMT_SMR.1[INSTALLER] Security roles (INSTALLER)

Hierarchical-To No other components.

Dependencies FIA_UID.1 Timing of identification

FMT_SMR.1.1[INSTALLER] The TSF shall maintain the roles: [assignment: Installer].

FMT_SMR.1.2[INSTALLER] The TSF shall be able to associate users with roles.

FPT_FLS.1[INSTALLER] Failure with preservation of secure state (INSTALLER)

Hierarchical-To No other components.

Dependencies No dependencies.

FPT_FLS.1.1[INSTALLER] The TSF shall preserve a secure state when the following types of failures occur: [assignment: the installer fails to load/install a package/applet as described in [4], §11.1.5].

AppNote The TOE may provide additional feedback information to the card manager in case of potential security violations (see FAU_ARP.1).

FPT_RCV.3[INSTALLER] Automated recovery without undue loss (INSTALLER)

Hierarchical-To FPT_RCV.2 Automated recovery

Dependencies AGD_OPE.1 Operational user guidance

FPT_RCV.3.1[INSTALLER] When automated recovery from [assignment: none] is not possible, the TSF shall enter a maintenance mode where the ability to return to a secure state is provided.
FPT_RCV.3.2[INSTALLER] For [assignment: a failure during load/installation of a package/applet and deletion of a package/applet/object], the TSF shall ensure the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3[INSTALLER] The functions provided by the TSF to recover from failure or service discontinuity shall ensure that the secure initial state is restored without exceeding [assignment: 0%] for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4[INSTALLER] The TSF shall provide the capability to determine the objects that were or were not capable of being recovered.

AppNote FPT_RCV.3.1[Installer]:

- This element is not within the scope of the Java Card specification, which only mandates the behavior of the Java Card System in good working order. Further details on the “maintenance mode” shall be provided in specific implementations. The following is an excerpt from [7], p298: In this maintenance mode normal operation might be impossible or severely restricted, as otherwise insecure situations might occur. Typically, only authorised users should be allowed access to this mode but the real details of who can access this mode is a function of FMT: Security management. If FMT: Security management does not put any controls on who can access this mode, then it may be acceptable to allow any user to restore the system if the TOE enters such a state. However, in practice, this is probably not desirable as the user restoring the system has an opportunity to configure the TOE in such a way as to violate the SFRs.

FPT_RCV.3.2[Installer]:

- Should the installer fail during loading/installation of a package/applet, it has to revert to a “consistent and secure state”. The Java Card RE has some clean up duties as well; see [4], §11.1.5 for possible scenarios. Precise behavior is left to implementers. This component shall include among the listed failures the deletion of a package/applet. See ([4], §11.3.4) for possible scenarios. Precise behavior is left to implementers.

- Other events such as the unexpected tearing of the card, power loss, and so on, are partially handled by the underlying hardware platform (see [10]) and, from the TOE’s side, by events “that clear transient objects” and transactional features. See FPT_FLS.1.1, FDP_RIP.1[TRANSIENT], FDP_RIP.1[ABORT] and FDP_ROL.1[FIREWALL].

FPT_RCV.3.3[Installer]:

- The quantification is implementation dependent, but some facts can be recalled here. First, the SCP ensures the atomicity of updates for fields and objects, and a power-failure during a transaction or the normal runtime does not create the loss of otherwise permanent data, in the sense that memory on a smart card is essentially persistent with this respect (EEPROM). Data stored on the RAM and subject to such failure is intended to have a limited lifetime anyway (runtime data on the stack,
transient objects’ contents). According to this, the loss of data within the TSF scope should be limited to the same restrictions of the transaction mechanism.

7.1.3 ADELG Security Functional Requirements

The list of SFRs of this category are taken from [5].

FDP_ACC.2[ADEL] Complete access control (ADEL)

Hierarchical-To

FDP_ACC.1 Subset access control

Dependencies

FDP_ACF.1 Security attribute based access control

FDP_ACC.2.1[ADEL] The TSF shall enforce the [assignment: ADEL access control SFP] on [assignment: S.ADEL, S.JCRE, S.JCVM, O.JAVAOBJECT, O.APPLET and O.CODE_PKG] and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2[ADEL] The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

Refinement

The operations involved in the policy are:

- OP.DELETE_APPLET,
- OP.DELETE_PCKG,
- OP.DELETE_PCKG_APPLET.

FDP_ACF.1[ADEL] Security attribute based access control (ADEL)

Hierarchical-To

No other components.

Dependencies

FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation

FDP_ACF.1.1[ADEL] The TSF shall enforce the [assignment: ADEL access control SFP] to objects based on the following [assignment:]

<table>
<thead>
<tr>
<th>Subject/Object</th>
<th>Security Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.JCVM</td>
<td>Active Applets</td>
</tr>
<tr>
<td>S.JCRE</td>
<td>Selected Applet Context, Registered Applets, Resident Packages</td>
</tr>
<tr>
<td>O.CODE_PKG</td>
<td>Package AID, Dependent Package AID, Static References</td>
</tr>
<tr>
<td>O.APPLET</td>
<td>Applet Selection Status</td>
</tr>
<tr>
<td>O.JAVAOBJECT</td>
<td>Owner, Remote</td>
</tr>
</tbody>
</table>

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: **[assignment]**:

In the context of this policy, an object O is reachable if and only one of the following conditions hold:

1. the owner of O is a registered applet instance A (O is reachable from A),
2. a static field of a resident package P contains a reference to O (O is reachable from P),
3. there exists a valid remote reference to O (O is remote reachable),
4. there exists an object O' that is reachable according to either (1) or (2) or (3) above and O' contains a reference to O (the reachability status of O is that of O').

The following access control rules determine when an operation among controlled subjects and objects is allowed by the policy:

- **R.JAVA.14** ([4], §11.3.4.2, Applet Instance Deletion): $S\text{.ADEL}$ may perform OP.DELETE_APPLET upon an $O\text{.APPLET}$ only if,
 1. $S\text{.ADEL}$ is currently selected,
 2. there is no instance in the context of $O\text{.APPLET}$ that is active in any logical channel and
 3. there is no $O\text{.JAVAOBJECT}$ owned by $O\text{.APPLET}$ such that either $O\text{.JAVAOBJECT}$ is reachable from an applet instance distinct from $O\text{.APPLET}$, or $O\text{.JAVAOBJECT}$ is reachable from a package P, or ([4], §8.5) $O\text{.JAVAOBJECT}$ is remote reachable.

- **R.JAVA.15** ([4], §11.3.4.2.1, Multiple Applet Instance Deletion): $S\text{.ADEL}$ may perform OP.DELETE_APPLET upon several $O\text{.APPLET}$ only if,
 1. $S\text{.ADEL}$ is currently selected,
 2. there is no instance of any of the $O\text{.APPLET}$ being deleted that is active in any logical channel and
 3. there is no $O\text{.JAVAOBJECT}$ owned by any of the $O\text{.APPLET}$ being deleted such that either $O\text{.JAVAOBJECT}$ is reachable from an applet instance distinct from any of those $O\text{.APPLET}$, or $O\text{.JAVAOBJECT}$ is reachable from a package P, or ([4], §8.5) $O\text{.JAVAOBJECT}$ is remote reachable.

- **R.JAVA.16** ([4], §11.3.4.3, Applet/Library Package Deletion): $S\text{.ADEL}$ may perform OP.DELETE_PCKG upon an $O\text{.CODE_PKG}$ only if,
 1. $S\text{.ADEL}$ is currently selected,
 2. no reachable $O\text{.JAVAOBJECT}$, from a package distinct from $O\text{.CODE_PKG}$ that is an instance of a class that belongs to $O\text{.CODE_PKG}$, exists on the card and
 3. there is no resident package on the card that depends on $O\text{.CODE_PKG}$.
• **R.JAVA.17** ([4], §11.3.4.4, Applet Package and Contained Instances Deletion): S.ADEL may perform OP.DELETE_PCKG_APPLET upon an O.CODE_PKG only if,
 1. S.ADEL is currently selected,
 2. no reachable O.JAVAOBJECT, from a package distinct from O.CODE_PKG, which is an instance of a class that belongs to O.CODE_PKG exists on the card,
 3. there is no package loaded on the card that depends on O.CODE_PKG, and
 4. for every O.APPLET of those being deleted it holds that: (i) there is no instance in the context of O.APPLET that is active in any logical channel and (ii) there is no O.JAVAOBJECT owned by O.APPLET such that either O.JAVAOBJECT is reachable from an applet instance not being deleted, or O.JAVAOBJECT is remote reachable.

FDP_ACF.1.3[ADEL] The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [assignment: none].

FDP_ACF.1.4[ADEL-EditoriallyRefined] The TSF shall explicitly deny access of [assignment: any subject but S.ADEL to O.CODE_PKG or O.APPLET for the purpose of deleting them from the card].

AppNote

- **FDP_ACF.1.2[ADEL]:**
 - This policy introduces the notion of reachability, which provides a general means to describe objects that are referenced from a certain applet instance or package.
 - S.ADEL calls the “uninstall” method of the applet instance to be deleted, if implemented by the applet, to inform it of the deletion request. The order in which these calls and the dependencies checks are performed are out of the scope of this protection profile.

FDP_RIP.1[ADEL]

- **Hierarchical-To**: No other components.
- **Dependencies**: No dependencies.

FDP_RIP.1.1[ADEL]

The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: de-allocation of the resource from] the following objects: [assignment: applet instances and/or packages when one of the deletion operations in FDP_ACC.2.1[ADEL] is performed on them].

AppNote

Deleted freed resources (both code and data) may be reused, depending on the way they were deleted (logically or physically). Requirements on de-allocation during applet/package deletion are described in [4], §11.3.4.1, §11.3.4.2 and §11.3.4.3.
FMT_MSA.1[ADEL] Management of security attributes (ADEL)
Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions
FMT_MSA.1.1[ADEL] The TSF shall enforce the [assignment: ADEL access control SFP] to restrict the ability to [selection: modify] the security attributes [assignment: Registered Applets and Resident Packages] to [assignment: S.JCRE].

FMT_MSA.3[ADEL] Static attribute initialisation (ADEL)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[ADEL] The TSF shall enforce the [assignment: ADEL access control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[ADEL] The TSF shall allow the [assignment: none], to specify alternative initial values to override the default values when an object or information is created.

FMT_SMF.1[ADEL] Specification of Management Functions (ADEL)
Hierarchical-To No other components.
Dependencies No dependencies.
FMT_SMF.1.1[ADEL] The TSF shall be capable of performing the following management functions: [assignment: modify the list of registered applets’ AIDs and the Resident Packages].

FMT_SMR.1[ADEL] Security roles (ADEL)
Hierarchical-To No other components.
Dependencies FIA_UID.1 Timing of identification
FMT_SMR.1.1[ADEL] The TSF shall maintain the roles: [assignment: applet deletion manager].
FMT_SMR.1.2[ADEL] The TSF shall be able to associate users with roles.
FPT_FLS.1[ADEL] Failure with preservation of secure state (ADEL)
Hierarchical-To No other components.
Dependencies No dependencies.
FPT_FLS.1.1[ADEL] The TSF shall preserve a secure state when the following types of failures occur: [assignment: the applet deletion manager fails to delete a package/applet as described in [4], §11.3.4.]

AppNote • The TOE may provide additional feedback information to the card manager in case of a potential security violation (see FAU_ARP.1).
• The Package/applet instance deletion must be atomic. The "secure state" referred to in the requirement must comply with Java Card specification ([4], §11.3.4.)

7.1.4 RMIG Security Functional Requirements
Not used in this ST because RMI is optional in PP [5] and the TOE does not support RMI.

7.1.5 ODELG Security Functional Requirements
The list of SFRs of this category are taken from [5].
FDP_RIP.1[ODEL] Subset residual information protection (ODEL)
Hierarchical-To No other components.
Dependencies No dependencies.
FDP_RIP.1.1[ODEL] The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: deallocation of the resource from] the following objects: [assignment: the objects owned by the context of an applet instance which triggered the execution of the method javacard.framework.JCSystem.requestObjectDeletion()].

AppNote • Freed data resources resulting from the invocation of the method javacard.framework.JCSystem.requestObjectDeletion() may be reused. Requirements on de-allocation after the invocation of the method are described in [2].
• There is no conflict with FDP_ROL.1 here because of the bounds on the rollback mechanism: the execution of requestObjectDeletion() is not in the scope of the rollback because it must be performed in between APDU command processing, and therefore no transaction can be in progress.

FPT_FLS.1[ODEL] Failure with preservation of secure state (ODEL)
Hierarchical-To: No other components.

Dependencies: No dependencies.

FPT_FLS.1.1[ODEL]: The TSF shall preserve a secure state when the following types of failures occur: [assignment: the object deletion functions fail to delete all the unreferenced objects owned by the applet that requested the execution of the method].

AppNote: The TOE may provide additional feedback information to the card manager in case of potential security violation (see FAU_ARP.1).

7.1.6 CarG Security Functional Requirements

The card management SFRs from the PP [5] are refined and replaced by the following SFRs.

FDP_UIT.1[CCM]: Data exchange integrity (CCM)

Hierarchical-To: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] [FTP_ITC.1 Inter-TSF trusted channel, or FTP_TRP.1 Trusted path]

FDP_UIT.1.2[CCM]: The TSF shall be able to determine on receipt of user data, whether [selection: modification, deletion, insertion, replay] has occurred.

FDP_ROL.1[CCM]: Basic rollback (CCM)

Hierarchical-To: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]

FDP_ROL.1.1[CCM]: The TSF shall enforce [assignment: Security Domain access control policy] to permit the rollback of the [assignment: installation operation] on the [assignment: executable files and application instances].

FDP_ROL.1.2[CCM]: The TSF shall permit operations to be rolled back within the [assignment: boundaries of available memory before the card content management function started].
FDP_ITC.2[CCM] Import of user data with security attributes (CCM)

Hierarchical-To No other components.

Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] [FTP_ITC.1 Inter-TSF trusted channel, or FTP_TRP.1 Trusted path] FPT_TDC.1 Inter-TSF basic TSF data consistency

FDP_ITC.2.1[CCM] The TSF shall enforce the [assignment: Security Domain access control policy and the Secure Channel Protocol information flow policy] when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2[CCM] The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3[CCM] The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4[CCM] The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5[CCM] The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [assignment: Package loading is allowed only if, for each dependent package, its AID attribute is equal to a resident package AID attribute, the major (minor) Version attribute associated to the dependent package is lesser than or equal to the major (minor) Version attribute associated to the resident package (3), §4.5.2].

AppNote This SFR also covers security functionality required by Amendment A of the GP specification [16], i.e. personalizing SDs and loading ciphered load files.

FPT_FLS.1[CCM] Failure with preservation of secure state (CCM)

Hierarchical-To No other components.

Dependencies No dependencies.

FPT_FLS.1.1[CCM] The TSF shall preserve a secure state when the following types of failures occur: [assignment: the Security Domain fails to load/install an Executable File/application instance as described in [4], Section 11.1.5]

FDP_ACC.1[SD] Subset access control (SD)

Hierarchical-To No other components.

Dependencies FDP_ACF.1 Security attribute based access control

FDP_ACC.1.1[SD] The TSF shall enforce the [assignment: Security Domain access control policy] on:
Subjects: S.INSTALLER, S.ADEL, S.CAD (from [5]) and S.SD

Objects: Delegation Token, DAP Block and Load File

Operations: GlobalPlatform’s card content management APDU commands and API methods

FDP_ACF.1[SD] Security attribute based access control (SD)
Hierarchical-To No other components.
Dependencies FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation
FDP_ACF.1.1[SD] The TSF shall enforce the [assignment: Security Domain access control policy] to objects based on the following: [assignment:

- Subjects:
 - S.INSTALLER, defined in [5] and represented by the GlobalPlatform Environment (OPEN) on the card, the Card Life Cycle attributes (defined in Section 5.1.1 of [26])
 - S.ADEL, also defined in [5] and represented by the GlobalPlatform Environment (OPEN) on the card
 - S.SD receiving the Card Content Management commands (through APDUs or APIs) with a set of Privileges (defined in Section 6.6.1 of [26]), a Life-cycle Status (defined in Section 5.3.2 of [26]) and a Secure Communication Security Level (defined in Section 10.6 of [26])
 - S.CAD, defined in [5], the off-card entity that communicates with the S.INSTALLER and S.ADEL through S.SD

- Objects:
 - The Delegation Token, in case of Delegated Management operations, with the attributes Present or Not Present
 - The DAP Block, in case of application loading, with the attributes Present or Not Present
 - The Load File or Executable File, in case of application loading, installation, extradition or registry update, with a set of intended privileges and its targeted associated SD AID.

- Mapping subjects/objects to security attributes:
 - S.INSTALLER: Security Level, Card Life Cycle, Life-cycle Status, Privileges, Resident Packages, Registered Applets
 - S.ADEL: Active Applets, Static References, Card Life Cycle, Life-cycle Status, Privileges, Applet Selection Status, Security Level
FDP_ACF.1.2[SD] The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [assignment: Runtime behavior rules defined by GlobalPlatform for:

- loading (Section 9.3.5 of [26])
- installation (Section 9.3.6 of [26])
- extradition (Section 9.4.1 of [26])
- registry update (Section 9.4.2 of [26])
- content removal (Section 9.5 of [26]).]

FDP_ACF.1.3[SD] The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [assignment: none].

FDP_ACF.1.4[SD] The TSF shall explicitly deny access of subjects to objects based on the following additional rules: [assignment: when at least one of the rules defined by GlobalPlatform does not hold.]

FMT_MSA.1[SD] Management of security attributes (SD)
Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1[SD] The TSF shall enforce the [assignment: Security Domain access control policy] to restrict the ability to [assignment: modify] the security attributes [assignment:

- Card Life Cycle,
- Privileges,
- Life-cycle Status,
- Security Level.]

to [assignment: the Security Domain and the application instance itself].

FMT_MSA.3[SD] Static attribute initialisation (SD)
Hierarchical-To No other components.
Dependencies

FMT_MSA.1 Management of security attributes

The TSF shall enforce the [assignment: Security Domain access control policy] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.1[SD] The TSF shall allow the [assignment: Card Issuer or the Application Provider] to specify alternative initial values to override the default values when an object or information is created.

Refinement Alternative initial values shall be at least as restrictive as the default values defined in FMT_MSA.3.1[SD].

FMT_SMF.1[SD] Specification of Management Functions (SD)

Hierarchical-To No other components.

Dependencies No dependencies.

FMT_SMF.1.1[SD] The TSF shall be capable of performing the following management functions: [assignment:]

- Management functions specified in GlobalPlatform specifications [GP]:
 - card locking (Section 9.6.3 of [26])
 - application locking and unlocking (Section 9.6.2 of [26])
 - card termination (Section 9.6.4 of [26])
 - card status interrogation (Section 9.6.6 of [26])
 - application status interrogation (Section 9.6.5 of [26]).

FMT_SMR.1[SD] Security roles (SD)

Hierarchical-To No other components.

Dependencies FIA_UID.1 Timing of identification

FMT_SMR.1.1[SD] The TSF shall maintain the roles [assignment: ISD, SSD].

FMT_SMR.1.2[SD] The TSF shall be able to associate users with roles.

FCO_NRO.2[SC] Enforced proof of origin (SC)

Hierarchical-To FCO_NRO.1 Selective proof of origin.
Dependencies

FIA_UID.1 Timing of identification.

FCO_NRO.2.1[SC] The TSF shall enforce the generation of evidence of origin for transmitted [assignment: Executable load files] at all times.

FCO_NRO.2.2[SC] The TSF shall be able to relate the [assignment: DAP Block] of the originator of the information, and the [assignment: identity] of the information to which the evidence applies.

FCO_NRO.2.3[SC] The TSF shall provide a capability to verify the evidence of origin of information to [selection: originator] given [assignment: at the time the Executable load files are received as no evidence is kept on the card for future verification].

AppNote

FCO_NRO.2.1[SC]:

- Upon reception of a new application package for installation, the card manager shall first check that it actually comes from the verification authority. The verification authority is the entity responsible for bytecode verification.

FCO_NRO.2.3[SC]:

- The exact limitations on the evidence of origin are implementation dependent. In most of the implementations, the card manager performs an immediate verification of the origin of the package using an electronic signature mechanism, and no evidence is kept on the card for future verifications.

FDP_IFC.2[SC] Complete information flow control (SC)

Hierarchical-To FDP_IFC.1 Subset information flow control

Dependencies FDP_IFF.1 Simple security attributes

FDP_IFC.2.1[SC] The TSF shall enforce the [assignment: Secure Channel Protocol information flow control policy] on [assignment:

- the subjects S.CAD and S.SD, involved in the exchange of messages between the TOE and the CAD through a potentially unsafe communication channel,

- the information controlled by this policy are the card content management commands, including personalization commands, in the APDUs sent to the card and their associated responses returned to the CAD]

and all operations that cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2[SC] The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.
FDP_IFF.1[SC] Simple security attributes (SC)

Hierarchical-To No other components.

Dependencies FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation

FDP_IFF.1.1[SC] The TSF shall enforce the [assignment: Secure Channel Protocol information flow control policy] based on the following types of subject and information security attributes:

[assignment:

- Subjects:
 - S.SD receiving the Card Content Management commands (through APDUs or APIs).
 - S.CAD the off-card entity that communicates with the S.SD.

- Information:
 - executable load file, in case of application loading;
 - applications or SD privileges, in case of application installation or registry update;

FDP_IFF.1.2[SC] The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [assignment:

- Runtime behavior rules defined by GlobalPlatform for:
 - loading (Section 9.3.5 of [26]);
 - installation (Section 9.3.6 of [26]);
 - extradition (Section 9.4.1 of [26]);
 - registry update (Section 9.4.2 of [26]);
 - content removal (Section 9.5 of [26]).]

FDP_IFF.1.3[SC] The TSF shall enforce the [assignment: no additional information flow control SFP rules].

FDP_IFF.1.4[SC] The TSF shall explicitly authorise an information flow based on the following rules: [assignment: none].

FDP_IFF.1.5[SC] The TSF shall explicitly deny an information flow based on the following rules: [assignment:

- When none of the conditions listed in the element FDP_IFF.1.4 of this component hold and at least one of those listed in the element FDP_IFF.1.2 does not hold.]

AppNote The subject S.SD can be the ISD or APSD.

AppNote The on-card and the off-card subjects have security attributes such as MAC, Cryptogram, Challenge, Key Set, Static Keys, etc.
Hierarchical-To: No other components.

Dependencies

[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1[SC]

The TSF shall enforce the [assignment: Secure Channel Protocol information flow control policy] to restrict the ability to [selection: modify] the security attributes [assignment:

- Key Set,
- Security Level,
- Secure Channel Protocol,
- Session Keys,
- Sequence Counter,
- ICV,]

to [assignment: the actor associated with the according security domain:

- The Card Issuer for ISD,
- The Application Provider for APSD.]

AppNote

The key data used for setting up a secure channel is according to GP spec [26], Amendment D [17] and Amendment F [25].

FMT_MSA.3[SC]

Static attribute initialisation (SC)

Hierarchical-To: No other components.

Dependencies

FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles

FMT_MSA.3.1[SC]

The TSF shall enforce the [assignment: Secure Channel Protocol information flow control policy] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2[SC]

The TSF shall allow the [assignment: Card Issuer, Application Provider] to specify alternative initial values to override the default values when an object or information is created.

FMT_SMF.1[SC]

Specification of Management Functions (SC)

Hierarchical-To: No other components.

Dependencies

No dependencies.
FMT_SMF.1.1[SC] The TSF shall be capable of performing the following management functions: \textbf{assignment:}

- Management functions specified in GlobalPlatform specifications [GP]:
 - loading (Section 9.3.5 of [26])
 - installation (Section 9.3.6 of [26])
 - extradition (Section 9.4.1 of [26])
 - registry update (Section 9.4.2 of [26])
 - content removal (Section 9.5 of [26]).

AppNote All management functions related to secure channel protocols shall be relevant.

FIA_UID.1[SC] \textbf{Timing of identification (SC)}

Hierarchical-To No other components.

Dependencies No dependencies.

FIA_UID.1.1[SC] The TSF shall allow \textbf{assignment:}

- application selection

- initializing a secure channel with the card

- requesting data that identifies the card or the Card Issuer

on behalf of the user to be performed before the user is identified.

FIA_UID.1.2[SC] The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

AppNote The GlobalPlatform TSF mediated actions listed in [GP] such as selecting an application, requesting data, initializing, etc.

FIA_UAU.1[SC] \textbf{Timing of authentication (SC)}

Hierarchical-To No other components.

Dependencies FIA_UID.1 Timing of identification

FIA_UAU.1.1[SC] The TSF shall allow \textbf{assignment: the TSF mediated actions listed in FIA_UID.1[SC]} on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2[SC] The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.
FIA_UAU.4[SC] Single-use authentication mechanisms
Hierarchical-To No other components.
Dependencies No dependencies.
FIA_UAU.4.1[SC] The TSF shall prevent reuse of authentication data related to [assignment: the authentication mechanism used to open a secure communication channel with the card.]

FTP_ITC.1[SC] Inter-TSF trusted channel (SC)
Hierarchical-To No other components.
Dependencies No dependencies.
FTP_ITC.1.1[SC] The TSF shall provide a communication channel between itself and another trusted IT that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure.
FTP_ITC.1.2[SC] The TSF shall permit [selection: another trusted IT product] to initiate communication via the trusted channel.
FTP_ITC.1.3[SC] The TSF shall initiate communication via the trusted channel for [assignment: all card management functions:]

- loading
- installation
- extradition
- registry update
- content removal
- changing the Application Life Cycle or Card Life Cycle.

7.1.7 EMG Security Functional Requirements
Not used in this ST because EMG is optional in PP [5] and the TOE does not support EMG.

7.1.8 Further Security Functional Requirements
The SFRs in this section provide additional proprietary features.
FAU_SAS.1[SCP] Audit Data Storage (SCP)
Hierarchical-To
Dependencies
FAU_SAS.1.1[SCP] The TSF shall provide [assignment: test personnel before TOE Delivery] with the capability to store the [assignment: Initialisation Data and/or Prepersonalisation Data and/or supplements of the Smartcard Embedded Software] in the [assignment: audit records].

FCS_RNG.1 Quality metric for random numbers
Hierarchical-To
Dependencies
FCS_RNG.1.1 The TSF shall provide a [selection: deterministic] random number generator that implements [assignment:

- (DRG.3.1) If initialized with a random seed using a PTRNG of class PTG.2 (as defined in [14]) as random source, the internal state of the RNG shall have at least 256 bit of entropy.
- (DRG.3.2) The RNG provides forward secrecy (as defined in [14]).
- (DRG.3.3) The RNG provides backward secrecy even if the current internal state is known (as defined in [14]).

]

FCS_RNG.1.2 The TSF shall provide [selection: octets of bits] that meet [assignment:

- (DRG.3.4) The RNG, initialized with a random seed using a PTRNG of class PTG.2 (as defined in [14]) as random source, generates output for which for AES-mode 2^{48} and for TDEA-mode 2^{35} strings of bit length 128 are mutually different with probability at least $1 - 2^{-24}$.
- (DRG.3.5) Statistical test suites cannot practically distinguish the random numbers from output sequences of an ideal RNG. The random numbers must pass test procedure A (as defined in [14]).

]

AppNote This functionality is provided by the certified Security Software, see [34]

FIA_AFL.1[PIN] Basic Authentication Failure Handling (PIN)
Hierarchical-To No other components.

Dependencies FIA_UAU.1 Timing of authentication.

FIA_AFL.1.1[PIN] The TSF shall detect when [selection: an administrator configurable positive integer within [1 and 127]] unsuccessful authentication attempts occur related to [assignment: any user authentication using D.PIN].

FIA_AFL.1.2[PIN] When the defined number of unsuccessful authentication attempts has been [selection: surpassed], the TSF shall [assignment: block the authentication with D.PIN].

AppNote The dependency with FIA_UAU.1 is not applicable. The TOE implements the firewall access control SFP, based on which access to the object implementing FIA_AFL.1[PIN] is organized.

FPT_EMSEC.1 TOE emanation

Hierarchical-To No other components.

Dependencies No dependencies.

FPT_EMSEC.1.1 The TOE shall not emit [assignment: variations in power consumption or timing during command execution] in excess of [assignment: non-useful information] enabling access to [assignment: TSF data: D.CRYPTO] and [assignment: User data: D.PIN, D.APP_KEYs].

FPT_PHP.3 Resistance to physical attack

Hierarchical-To No other components.

Dependencies No dependencies.

FPT_PHP.3.1 The TSF shall resist [assignment: physical manipulation and physical probing] to the [assignment: TSF] by responding automatically such that the SFRs are always enforced.

Refinement The TSF will implement appropriate mechanisms to continuously counter physical manipulation and physical probing. Due to the nature of these attacks (especially manipulation) the TSF can by no means detect attacks on all of its elements. Therefore, permanent protection against these attacks is required ensuring that security functional requirements are enforced. Hence, "automatic response" means here (i) assuming that there might be an attack at any time and (ii) countermeasures are provided at any time.

AppNote This SFR is taken from the certified Security IC Platform Protection Profile [10].
7.1.9 SecureBox Security Functional Requirements

The SFRs in this section provide additional proprietary features for SecureBox feature.

FDP_ACC.2[SecureBox] Complete access control (SecureBox)
Hierarchical-To FDP_ACC.1 Subset access control
Dependencies FDP_ACF.1 Security attribute based access control

FDP_ACC.2.1[SecureBox] The TSF shall enforce the \textbf{ SecureBox access control SFP} on \textbf{ S.SBNativeCode, O.SB_Content, O.NON_SB_Content, O.SB_SFR, O.NON_SB_SFR} and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2[SecureBox] The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

Refinement The operations involved in this policy are:
- OP.SB_ACCESS,
- OP.SB_ACCESS_SFR.

FDP_ACF.1[SecureBox] Security attribute based access control (SecureBox)
Hierarchical-To No other components.
Dependencies FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation

FDP_ACF.1.1[SecureBox] The TSF shall enforce the \textbf{ SecureBox access control SFP} to all objects based on the following:
- \textbf{ S.SBNativeCode, O.SB_Content, O.NON_SB_Content, O.SB_SFR} and the attributes CPU Mode, the MMU Segment Table, the Special Function Registers to configure the MMU segmentation and the Special Function Registers related to system management.

FDP_ACF.1.2[SecureBox] The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- Code assigned to \textbf{ S.SBNativeCode} shall only be executed in \textbf{ CPU Mode Application Unprivileged Mode}.
- Code assigned to \textbf{ S.SBNativeCode} shall only be able to perform \textbf{ OP.SB_ACCESS to O.SB_Content}. The memory area which belongs to \textbf{ O.SB_Content} is controlled by the MMU Segment Table used by the Memory Management Unit.

FDP_ACF.1.3[SecureBox] The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: \textbf{ none}

FDP_ACF.1.4[SecureBox] The TSF shall explicitly deny access of subjects to objects based on the following additional rules:

• For S.SBNative Code it shall not be possible to perform OP.SB_ACCESS to O.NON_SB_Content.

• For S.SBNative Code it shall not be possible to perform OP.SB_ACCESS_SFR to O.SB_SFR.

FMT_MSA.1[SecureBox] Management of security attributes (SecureBox)
Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions
FMT_MSA.1.1[SecureBox] The TSF shall enforce the [assignment: SecureBox access control SFP] to restrict the ability to [selection: modify] the security attributes [assignment: CPU Mode and the MMU Segment Table] to [assignment: S.JCRE].

FMT_MSA.3[SecureBox] Static attribute initialisation (SecureBox)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[SecureBox] The TSF shall enforce the [assignment: SecureBox access control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[SecureBox] The TSF shall allow the [assignment: S.JCRE] to specify alternative initial values to override the default values when an object or information is created.
AppNote During the prepersonalisation of the TOE the initial restrictive values for the security attributes can be overwriten by the JCRE.
AppNote The dependency to FMT_SMR.1 is fulfilled by FMT_SMR.1.

FMT_SMF.1[SecureBox] Specification of Management Functions (SecureBox)
Hierarchical-To No other components.
Dependencies No dependencies.
FMT_SMF.1.1[SecureBox] The TSF shall be capable of performing the following management functions: [assignment:
- Switch the CPU Mode
- Change the values in the MMU Segment Table to assign RAM and Flash areas to the Secure Box.

7.1.10 Configuration Security Functional Requirements

FDP_IFC.2[CFG] Complete information flow control (CFG)

Hierarchical-To FDP_IFC.1 Subset information flow control

Dependencies FDP_IFF.1 Simple security attributes

The TSF shall enforce the [assignment: CONFIGURATION information flow control SFP] on [assignment: S.Customer, S.NXP, S.ConfigurationMechanism, and D.CONFIG_ITEM] and all operations that cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2[CFG] The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.

FDP_IFF.1[CFG] Simple security attributes (CFG)

Hierarchical-To No other components.

Dependencies FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation

The TSF shall enforce the [assignment: CONFIGURATION information flow control SFP] based on the following types of subject and information security attributes: [assignment:

<table>
<thead>
<tr>
<th>Subject/Information</th>
<th>Security attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.Customer</td>
<td>Customer Configuration Token</td>
</tr>
<tr>
<td>S.NXP</td>
<td>NXP Configuration Token</td>
</tr>
<tr>
<td>S.ConfigurationMechanism</td>
<td>NXP Configuration Access, Customer Configuration Access</td>
</tr>
<tr>
<td>D.CONFIG_ITEM</td>
<td>access privilege</td>
</tr>
</tbody>
</table>

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [assignment:

- Read and write operations of D.CONFIG_ITEM between S.ConfigurationMechanism and S.NXP shall only be possible when S.NXP is authenticated with its token using the NXP Configuration Token.
• Read and write operations of D.CONFIG_ITEM between S.ConfigurationMechanism and S.Customer shall only be possible when S.Customer is authenticated with its token using the Customer Configuration Token and if access privilege allows it.

• Enabling or disabling of NXP Configuration Access between S.ConfigurationMechanism and S.NXP shall only be possible when S.NXP is authenticated with its token using the NXP Configuration Token.

FDP_IFF.1.3[CFG] The TSF shall enforce the additional information flow control SFP rules [assignment: none].

FDP_IFF.1.4[CFG] The TSF shall explicitly authorise an information flow based on the following rules [assignment: none].

FDP_IFF.1.5[CFG] The TSF shall explicitly deny an information flow based on the following rules [assignment:

 • If the NXP Configuration Access is disabled then nobody can read or write D.CONFIG_ITEM.

 • If the Customer Configuration Access is disabled then S.Customer can not read or write D.CONFIG_ITEM.

AppNote GlobalPlatform Framework authentication mechanism is used to authenticate the tokens.

FIA_UID.1[CFG] Timing of identification (CFG)

Hierarchical-To No other components.
Dependencies No dependencies.

FIA_UID.1.1[CFG] The TSF shall allow [assignment: to select the configuration applet] on behalf of the user to be performed before the user is identified.

FIA_UID.1.2[CFG] The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

FMT_MSA.1[CFG] Management of security attributes (CFG)

Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_MSA.3[CFG] Static attribute initialisation (CFG)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[CFG] The TSF shall enforce the [assignment: CONFIGURATION information flow control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[CFG] The TSF shall allow the [assignment: nobody] to specify alternative initial values to override the default values when an object or information is created.

FMT_SMF.1[CFG] Specification of Management Functions (CFG)
Hierarchical-To No other components.
Dependencies No dependencies.
FMT_SMF.1.1[CFG] The TSF shall be capable of performing the following management functions: [assignment: disable the NXP Configuration Access, disable the Customer Configuration Access.]

FMT_SMR.1[CFG] Security roles (CFG)
Hierarchical-To No other components.
Dependencies FIA_UID.1 Timing of identification
FMT_SMR.1.1[CFG] The TSF shall maintain the roles [assignment: S.NXP and S.Customer].
FMT_SMR.1.2[CFG] The TSF shall be able to associate users with roles.
AppNote The roles of the CONFIGURATION information flow control SFP are defined by the NXP Configuration Token and the Customer Configuration Token.
7.1.11 OS update Security Functional Requirements

The SFRs in this section provide JCOP proprietary features.

FDP_IFC.2[OSU] Complete information flow control (OSU)
Hierarchical-To FDP_IFC.1 Subset information flow control
Dependencies FDP_IFF.1 Simple security attributes

FDP_IFC.2.1[OSU] The TSF shall enforce the [assignment: OS Update information flow control SFP] on [assignment: S.OSU and D.UPDATE_IMAGE] and all operations that cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2[OSU] The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.

FDP_IFF.1[OSU] Simple security attributes (OSU)
Hierarchical-To No other components.
Dependencies FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation

FDP_IFF.1.1[OSU] The TSF shall enforce the [assignment: OS Update information flow control SFP] based on the following types of subject and information security attributes: [assignment:

<table>
<thead>
<tr>
<th>Subject/Information</th>
<th>Security attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.OSU</td>
<td>Current Sequence Number, Verification Key, Package Decryption Key</td>
</tr>
<tr>
<td>D.UPDATE_IMAGE</td>
<td>Received Sequence Number, Image Type</td>
</tr>
</tbody>
</table>

].

FDP_IFF.1.2[OSU] The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [assignment:

- S.OSU shall only accept D.UPDATE_IMAGE which signature can be verified with Verification Key.
- S.OSU shall only accept D.UPDATE_IMAGE for the update process that can be decrypted with Package Decryption Key.

].

FDP_IFF.1.3[OSU] The TSF shall enforce the additional information flow control SFP rules [assignment: S.OSU shall only authorize D.UPDATE_IMAGE for the update process if the following rules apply:

- If Image Type equals Reset then Received Sequence Number shall equal Current Sequence Number.
• If Image Type equals Upgrade then Received Sequence Number shall be higher than Current Sequence Number.
• If Image Type equals Downgrade then Received Sequence Number shall be lower than Current Sequence Number.

FDP_IFF.1.4[OSU] The TSF shall explicitly authorise an information flow based on the following rules [assignment: none].

FDP_IFF.1.5[OSU] The TSF shall explicitly deny an information flow based on the following rules [assignment: D.Update_image which is not included in the pre-loaded OS Update plan].

AppNote The on-card S.OSU role interacts with the off-card S.UpdateImageCreator via OSU commands. The D.UPDATE_IMAGE is split up into smaller chunks and transmitted as payload within the OSU Commands to the TOE.

AppNote Decrypting the D.UPDATE_IMAGE with the Package Decryption Key prevents the authorization of the D.UPDATE_IMAGE for the update process on a not certified system. The Package Decryption Key is only available on a certified TOE.

FMT_MSA.3[OSU] Static attribute initialisation (OSU)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[OSU] The TSF shall enforce the [assignment: OS Update information flow control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2[OSU] The TSF shall allow the [assignment: S.OSU] specify alternative initial values to override the default values when an object or information is created.

FMT_MSA.1[OSU] Management of security attributes (OSU)
Hierarchical-To No other components.
Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions
FMT_MSA.1.1[OSU] The TSF shall enforce the [assignment: OS Update information flow control SFP] to restrict the ability to [selection: modify] the security attributes [assignment: Current Sequence Number] to [assignment: S.OSU].
FMT_SMR.1[OSU] Security roles (OSU)
Hierarchical-To No other components.
Dependencies FIA_UID.1 Timing of identification
FMT_SMR.1.1[OSU] The TSF shall maintain the roles [assignment: S.OSU].
FMT_SMR.1.2[OSU] The TSF shall be able to associate users with roles.

FMT_SMF.1[OSU] Specification of Management Functions (OSU)
Hierarchical-To No other components.
Dependencies No dependencies.
FMT_SMF.1.1[OSU] The TSF shall be capable of performing the following management functions:

```plaintext
• query Current Sequence Number
• query Reference Sequence Number
```

AppNote After the atomic activation of the additional code the Final Sequence Number is returned on querying the Current Sequence Number.

FIA_UID.1[OSU] Timing of identification (OSU)
Hierarchical-To No other components.
Dependencies No dependencies.
FIA_UID.1.1[OSU] The TSF shall allow [assignment: OP.TRIGGER_UPDATE] on behalf of the user to be performed before the user is identified.
FIA_UID.1.2[OSU] The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

FIA_UAU.1[OSU] Timing of authentication (OSU)
Hierarchical-To No other components.
Dependencies FIA_UID.1 Timing of identification
FIA_UAU.1.1[OSU] The TSF shall allow [assignment: OP.TRIGGER_UPDATE] on behalf of the user to be performed before the user is authenticated.
FIA_UAU.1.2[OSU] The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

FIA_UAU.4[OSU] Single-use authentication mechanisms
Hierarchical-To No other components.
Dependencies No dependencies.
FIA_UAU.4.1[OSU] The TSF shall prevent reuse of authentication data related to [assignment: the authentication mechanism used to load D.UPDATE_IMAGE.]

FPT_FLS.1[OSU] Failure with preservation of secure state (OSU)
Hierarchical-To No other components.
Dependencies No dependencies.
FPT_FLS.1.1[OSU] The TSF shall preserve a secure state when the following types of failures occur: [assignment:

• Corrupted D.UPDATE_IMAGE is received
• Unauthorized D.UPDATE_IMAGE is received.
• The OS Update Process is interrupted.
• The activation of the additional code failed.
]

7.1.12 Restricted Mode Security Functional Requirements
The SFRs in this section provide JCOP proprietary features.

FDP_ACC.2[RM] Complete access control (Restricted Mode)
Hierarchical-To FDP_ACC.1 Subset access control
Dependencies FDP_ACF.1 Security attribute based access control
FDP_ACC.2.1[RM] The TSF shall enforce the [assignment: Restricted Mode access control SFP] on [assignment: S.SD, S.ACAadmin] and all operations among subjects and objects covered by the SFP.
FDP_ACC.2.2[RM] The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1[RM] Security attribute based access control (Restricted Mode)
Hierarchical-To No other components.
Dependencies FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation
FDP_ACF.1.1[RM] The TSF shall enforce the [assignment: Restricted Mode access control SFP] to objects based on the following [assignment:
<table>
<thead>
<tr>
<th>Subject/Object</th>
<th>Security attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.SD</td>
<td>D.ATTACK_COUNTER</td>
</tr>
<tr>
<td>S.ACAdmin</td>
<td>D.ATTACK_COUNTER</td>
</tr>
</tbody>
</table>
]

FDP_ACF.1.2[RM] The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [assignment: The D.ATTACK_COUNTER can be reset by S.ACAdmin or by the ISD.].

FDP_ACF.1.3[RM] The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [assignment: none].

FDP_ACF.1.4[RM] The TSF shall explicitly deny access of subjects to objects based on the following additional rules: [assignment: Deny all operations on all objects if the D.ATTACK_COUNTER has reached its limit (restricted mode), except for operations listed in FMT_SMF.1[RM]].

FMT_MSA.3[RM] Static attribute initialisation (Restricted Mode)
Hierarchical-To No other components.
Dependencies FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles
FMT_MSA.3.1[RM] The TSF shall enforce the [assignment: Restricted Mode access control SFP] to provide [selection: restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2[RM] The TSF shall allow the [assignment: nobody] to specify alternative initial values to override the default values when an object or information is created.

FMT_MSA.1[RM] Management of security attributes (Restricted Mode)
Hierarchical-To No other components.

Dependencies [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions

FMT_SMF.1[RM] Specification of Management Functions (Restricted Mode)

Hierarchical-To No other components.

Dependencies No dependencies.

FMT_SMF.1.1[RM] The TSF shall be capable of performing the following management functions: [assignment:
• reset D.ATTACK_COUNTER.
• select ISD.
• authentication against the ISD.
• initialize a Secure Channel with the card.
• query the Serial Number (Unique ID for chip).
• read Platform Identifier.
• query the logging information.
• read Secure Channel Sequence Counter.
• read Current Sequence Number.
]

FIA_UID.1[RM] Timing of identification (RM)

Hierarchical-To No other components.

Dependencies No dependencies.

FIA_UID.1.1[RM] The TSF shall allow [assignment:
• select ISD
• identify the card
• query the debug logging information
]
7.2 Security Assurance Requirements

The assurance requirements of this evaluation are EAL5 augmented by AVA_VAN.5, ALC_DVS.2, ASE_TSS.2, and ALC_FLR.1. The assurance requirements ensure, among others, the security of the TOE during its development and production.

7.3 Security Requirements Rationale for the TOE

7.3.1 Identification

OT.SID
7.3.2 Execution

OT.FIREWALL

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIA_UID.2[AID]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR. Installation procedures ensure protection against forgery (the AID of an applet is under the control of the TSFs) or re-use of identities and is met by the SFR.</td>
</tr>
<tr>
<td>FIA_USB.1[AID]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR. Installation procedures ensure protection against forgery (the AID of an applet is under the control of the TSFs) or re-use of identities and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.1[JCRE]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.1[JCVM]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.1[ADEL]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.3[FIREWALL]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.3[JCVM]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.3[ADEL]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MTD.1[JCRE]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MTD.3[JCRE]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_SMF.1[ADEL]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FIA_ATD.1[AID]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FDP_ITC.2[CCM]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Subjects’ identity is AID-based (applets, packages) and is met by the SFR.</td>
</tr>
</tbody>
</table>
SFR

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.2[FIREWALL]</td>
<td>The FIREWALL access control policy contributes to meet this objective.</td>
</tr>
<tr>
<td>FDP_ACF.1[FIREWALL]</td>
<td>The FIREWALL access control policy contributes to meet this objective.</td>
</tr>
<tr>
<td>FDP_IFC.1[JCVM]</td>
<td>The JCVM information flow control policy contributes to meet this objective.</td>
</tr>
<tr>
<td>FDP_IFF.1[JCVM]</td>
<td>The JCVM information flow control policy contributes to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[JCRE]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[JCVM]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[ADEL]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.2[FIREWALL-JCVM]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.3[FIREWALL]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.3[JCVM]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MTA.1[JCRE]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MTA.3[JCRE]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1[ADEL]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1[ADEL]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FDP_ITC.2[CCM]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[INSTALLER]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[ADEL]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes indirectly to meet this objective.</td>
</tr>
</tbody>
</table>

OT.GLOBAL_ARRAYS_CONFID

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.1[JCVM]</td>
<td>The JCVM information flow control policy meets the objective by preventing an application from keeping a pointer to a shared buffer, which could be used to read its contents when the buffer is being used by another application.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>FDP_IFF.1[JCVM]</td>
<td>The JCVM information flow control policy meets this objective by preventing an application from keeping a pointer to a shared buffer, which could be used to read its contents when the buffer is being used by another application.</td>
</tr>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>Contributes to meet the objective by protecting the array parameters of remotely invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>Contributes to meet the objective by protecting the array parameters of remotely invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>Only arrays can be designated as global, and the only global arrays required in the Java Card API are the APDU buffer and the global byte array input parameter (bArray) to an applet's install method. Contributes to meet this objective by fulfilling the clearing requirement of these arrays.</td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>Only arrays can be designated as global, and the only global arrays required in the Java Card API are the APDU buffer and the global byte array input parameter (bArray) to an applet's install method. Contributes to meet this objective by fulfilling the clearing requirement of these arrays.</td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>Contributes to meet the objective by protecting the array parameters of invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>Contributes to meet the objective by protecting the array parameters of invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Contributes to meet the objective by protecting the array parameters of invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Contributes to meet the objective by protecting the array parameters of invoked methods, which are global as well, through the general initialization of method parameters.</td>
</tr>
</tbody>
</table>
Rationale

OT.GLOBAL ARRAYS_INTEG

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_RIP.1[GlobalArray_Refined]</td>
<td>Only arrays can be designated as global, and the only global arrays required in the Java Card API are the APDU buffer, the global byte array input parameter (bArray) to an applet's install method and the global arrays created by the JCSystem.makeGlobalArray(...) method. Contributes to meet this objective by fulfilling the clearing requirement of these arrays.</td>
</tr>
</tbody>
</table>

OT.NATIVE

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.1[JCVM]</td>
<td>Contributions to meet the objective by preventing an application from keeping a pointer to the APDU buffer of the card or to the global byte array of the applet's install method. Such a pointer could be used to access and modify it when the buffer is being used by another application.</td>
</tr>
<tr>
<td>FDP_IFF.1[JCVM]</td>
<td>Contributions to meet the objective by preventing an application from keeping a pointer to the APDU buffer of the card or to the global byte array of the applet's install method. Such a pointer could be used to access and modify it when the buffer is being used by another application.</td>
</tr>
</tbody>
</table>

OT.OPERATE

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_ARP.1</td>
<td>Contributions to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
<tr>
<td>FDP_ACC.2[FIREWALL]</td>
<td>Contributions to meet this objective by protecting the TOE through the FIREWALL access control policy.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>FDP_ACF.1[FIREWALL]</td>
<td>Contributes to meet this objective by protecting the TOE through the FIREWALL access control policy.</td>
</tr>
<tr>
<td>FDP_ROL.1[FIREWALL]</td>
<td>Contributes to meet this objective by providing support for cleanly abort applets’ installation, which belongs to the category security-critical parts and procedures protection.</td>
</tr>
<tr>
<td>FIA_AFL.1[PIN]</td>
<td>Contributes to meet the objective by protecting the authentication.</td>
</tr>
<tr>
<td>FIA_USB.1[AID]</td>
<td>Contributes to meet this objective by controlling the communication with external users and their internal subjects to prevent alteration of TSF data.</td>
</tr>
<tr>
<td>FPT_TDC.1</td>
<td>Contributes to meet this objective by protection in various ways against applets’ actions.</td>
</tr>
<tr>
<td>FPT_RCV.3[INSTALLER]</td>
<td>Contributes to meet this objective by providing safe recovery from failure, which belongs to the category of security-critical parts and procedures protection.</td>
</tr>
<tr>
<td>FIA_ATD.1[AID]</td>
<td>Contributes to meet this objective by controlling the communication with external users and their internal subjects to prevent alteration of TSF data.</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Contributes to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
<tr>
<td>FPT_FLS.1[INSTALLER]</td>
<td>Contributes to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
<tr>
<td>FPT_FLS.1[ADEL]</td>
<td>Contributes to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
<tr>
<td>FPT_FLS.1[ODEL]</td>
<td>Contributes to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
<tr>
<td>FDP_ITC.2[CCM]</td>
<td>Contributes to meet this objective by detecting and blocking various failures or security violations during usual working.</td>
</tr>
</tbody>
</table>

OT.REALLOCATION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
<tr>
<td>FDP_RIP.1[GlobalArray_Refined]</td>
<td>Contributes to meet the objective by imposing that the contents of the re-allocated block shall always be cleared before delivering the block.</td>
</tr>
</tbody>
</table>

OT.RESOURCES

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_AMP.1</td>
<td>Contributes to meet this objective by detecting stack/memory overflows during execution of applications</td>
</tr>
<tr>
<td>FDP_ROL.1[FIREFALL]</td>
<td>Contributes to meet this objective by preventing that failed installations create memory leaks</td>
</tr>
<tr>
<td>FMT_MTD.1[JCRE]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_MTD.3[JCRE]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_SMF.1[ADEL]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_SMR.1[INSTALLER]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_SMR.1[ADEL]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FPT_RCV.3[INSTALLER]</td>
<td>Contributes to meet this objective by preventing that failed installations create memory leaks</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Contributes to meet this objective by detecting stack/memory overflows during execution of applications</td>
</tr>
<tr>
<td>FPT_FLS.1[INSTALLER]</td>
<td>Contributes to meet this objective by detecting stack/memory overflows during execution of applications</td>
</tr>
<tr>
<td>FPT_FLS.1[ADEL]</td>
<td>Contributes to meet this objective by detecting stack/memory overflows during execution of applications</td>
</tr>
<tr>
<td>FPT_FLS.1[ODEL]</td>
<td>Contributes to meet this objective by detecting stack/memory overflows during execution of applications</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes to meet this objective since the TSF controls the memory management</td>
</tr>
</tbody>
</table>

7.3.3 Services

OT.ALARM

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_ARP.1</td>
<td>Contributes to meet this objective by defining TSF reaction upon detection of a potential security violation</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Contributes to meet the objective by providing the guarantee that a secure state is preserved by the TSF when failures occur</td>
</tr>
<tr>
<td>FPT_FLS.1[INSTALLER]</td>
<td>Contributes to meet the objective by providing the guarantee that a secure state is preserved by the TSF when failures occur</td>
</tr>
<tr>
<td>FPT_FLS.1[ADEL]</td>
<td>Contributes to meet the objective by providing the guarantee that a secure state is preserved by the TSF when failures occur</td>
</tr>
<tr>
<td>FPT_FLS.1[ODEL]</td>
<td>Contributes to meet the objective by providing the guarantee that a secure state is preserved by the TSF when failures occur</td>
</tr>
</tbody>
</table>
OT.CIPHER

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.1</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FPR_UNO.1</td>
<td>Contributes to meet the objective by controlling the observation of the cryptographic operations which may be used to disclose the keys</td>
</tr>
</tbody>
</table>

OT.KEY-MNGT

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.1</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_SD1.2</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FPR_UNO.1</td>
<td>Contributes to meet objective by controlling the observation of the cryptographic operations which may be used to disclose the keys</td>
</tr>
<tr>
<td>FDP_RIP.1[GlobalArray_Re fined]</td>
<td>Covers the objective directly</td>
</tr>
</tbody>
</table>

OT.PIN-MNGT

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.2[Firewall]</td>
<td>Contributes to meet the objective by protecting the access to private and internal data of the objects</td>
</tr>
<tr>
<td>FDP_ACF.1[Firewall]</td>
<td>Contributes to meet the objective by protecting the access to private and internal data of the objects</td>
</tr>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_ROL.1[FIREFALL]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_SDI.2</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FPR_UNO.1</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_RIP.1[GlobalArray_Refined]</td>
<td>Contributes to meet the objective</td>
</tr>
</tbody>
</table>

OT.TRANSACTION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_ROL.1[FIREFALL]</td>
<td>Covers the objective directly</td>
</tr>
<tr>
<td>FDP_RIP.1[GlobalArray_Refined]</td>
<td>Covers the objective directly</td>
</tr>
</tbody>
</table>

7.3.4 Object Deletion

OT.OBJ-DELETION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FPT_FLS.1[ODEL]</td>
<td>Contributes to meet the objective</td>
</tr>
</tbody>
</table>

7.3.5 Applet Management

OT.APPLI-AUTH

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1</td>
<td>Refinement: applies to FCS_COP.1[DAP]. Contributes to meet the security objective by ensuring that the loaded Executable Application is legitimate by specifying the algorithm to be used in order to verify the DAP signature of the Verification Authority.</td>
</tr>
</tbody>
</table>
SFR

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ROL.1[CCM]</td>
<td>Contributes to meet this security objective by ensures that card management operations may be cleanly aborted.</td>
</tr>
<tr>
<td>FPT_FLS.1[CCM]</td>
<td>Contributes to meet the security objective by preserving a secure state when failures occur.</td>
</tr>
</tbody>
</table>

OT.DOMAIN-RIGHTS

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FDP_ACF.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_MSA.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_MSA.3[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_SMF.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FCO_NRO.2[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>FDP_IFC.2[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FDP_IFF.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UID.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UAU.1[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UAU.4[SC]</td>
<td>Contributes to cover this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
</tbody>
</table>

OT.COMM_AUTH

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1</td>
<td>Contributes to meet the security objective by specifying secure cryptographic algorithm that shall be used to determine the origin of the card management commands.</td>
</tr>
</tbody>
</table>
SFR

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to meet the security objective by specifying the authorized identified roles enabling to send and authenticate card management commands.</td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>Contributes to meet the security objective by ensuring the origin of card administration commands.</td>
</tr>
<tr>
<td>FDP_IFC.2[SC]</td>
<td>Contributes to meet the security objective by specifying the authorized identified roles enabling to send and authenticate card management commands.</td>
</tr>
<tr>
<td>FDP_IFF.1[SC]</td>
<td>Contributes to meet the security objective by specifying the authorized identified roles enabling to send and authenticate card management commands.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes to meet the security objective by specifying security attributes enabling to authenticate card management requests.</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>Contributes to meet the security objective by specifying security attributes enabling to authenticate card management requests.</td>
</tr>
<tr>
<td>FIA_UID.1[SC]</td>
<td>Contributes to meet the security objective by specifying the actions that can be performed before authenticating the origin of the APDU commands that the TOE receives.</td>
</tr>
<tr>
<td>FIA_UAU.1[SC]</td>
<td>Contributes to meet the security objective by specifying the actions that can be performed before authenticating the origin of the APDU commands that the TOE receives.</td>
</tr>
</tbody>
</table>

OT.COMM_INTEGRITY

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1</td>
<td>Contributes to meet the security objective by by specifying secure cryptographic algorithm that shall be used to ensure the integrity of the card management commands.</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to cover this security objective by defining the roles enabling to send and authenticate the card management requests for which the integrity has to be ensured.</td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>Contributes to meet the security objective by ensuring the integrity of card management commands.</td>
</tr>
<tr>
<td>FDP_IFC.2[SC]</td>
<td>Contributes to cover the security objective by enforcing the Secure Channel Protocol information flow control policy to guarantee the integrity of administration requests.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>FDP_IFF.1[SC]</td>
<td>Contributes to cover the security objective by enforcing the Secure Channel Protocol information flow control policy to guarantee the integrity of administration requests.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes to cover the security objective by specifying security attributes enabling to guarantee the integrity of card management requests.</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>Contributes to cover the security objective by specifying security attributes enabling to guarantee the integrity of card management requests.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes to meet the security objective by specifying the actions activating the integrity check on the card management commands.</td>
</tr>
</tbody>
</table>

OT.COMM_CONFIDENTIALITY

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP1</td>
<td>Contributes to meet this objective by specifying secure cryptographic algorithm that shall be used to ensure the confidentiality of the card management commands.</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to cover the security objective by defining the roles enabling to send and authenticate the card management requests for which the confidentiality has to be ensured.</td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>Contributes to cover the security objective by ensuring the confidentiality of card management commands.</td>
</tr>
<tr>
<td>FDP_IFC.2[SC]</td>
<td>Contributes to cover the security objective by enforcing the Secure Channel Protocol information flow control policy to guarantee the confidentiality of administration requests.</td>
</tr>
<tr>
<td>FDP_IFF.1[SC]</td>
<td>Contributes to cover the security objective by enforcing the Secure Channel Protocol information flow control policy to guarantee the confidentiality of administration requests.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes to cover the security objective by specifying security attributes enabling to guarantee the confidentiality of card management requests by decrypting those requests and imposing management conditions on that attributes.</td>
</tr>
</tbody>
</table>
Rationale

FMT_MSA.3[SC]

Contributes to cover the security objective by specifying security attributes enabling to guarantee the confidentiality of card management requests by decrypting those requests and imposing management conditions on that attributes.

FMT_SMF.1[SC]

Contributes to cover the security objective by specifying the actions ensuring the confidentiality of the card management commands.

7.3.6 Card Management

OT.CARD-MANAGEMENT

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.2[ADEL]</td>
<td>Contributes to meet the objective by the ADEL access control policy which ensures the non-introduction of security holes. The integrity and confidentiality of data that does not belong to the deleted applet or package is a by-product of this policy as well</td>
</tr>
<tr>
<td>FDP_ACF.1[ADEL]</td>
<td>Contributes to meet the objective by the ADEL access control policy which ensures the non-introduction of security holes. The integrity and confidentiality of data that does not belong to the deleted applet or package is a by-product of this policy as well</td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>Contributes to meet the objective by ensuring the non-accessibility of deleted data</td>
</tr>
<tr>
<td>FMT_MSA.1[ADEL]</td>
<td>Contributes to meet the objective by enforcing the ADEL access control SFP</td>
</tr>
<tr>
<td>FMT_MSA.3[ADEL]</td>
<td>Contributes to meet the objective by enforcing the ADEL access control SFP</td>
</tr>
<tr>
<td>FMT_SMR.1[ADEL]</td>
<td>Contributes to meet the objective by maintaining the role applet deletion manager</td>
</tr>
<tr>
<td>FPT_RCV.3[INSTALLER]</td>
<td>Contributes to meet the objective by protecting the TSFs against possible failures of the deletion procedures</td>
</tr>
<tr>
<td>FPT_FLS.1[INSTALLER]</td>
<td>Contributes to meet the objective by protecting the TSFs against possible failures of the installer</td>
</tr>
<tr>
<td>FPT_FLS.1[ADEL]</td>
<td>Contributes to meet the objective by protecting the TSFs against possible failures of the deletion procedures</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>FDP_UIT.1[CCM]</td>
<td>Contributes to meet the objective by enforcing the Secure Channel Protocol information flow control policy and the Security Domain access control policy which controls the integrity of the corresponding data</td>
</tr>
<tr>
<td>FDP_ROL.1[CCM]</td>
<td>Contributes to meet this security objective by ensuring that card management operations may be cleanly aborted.</td>
</tr>
<tr>
<td>FDP_ITC.2[CCM]</td>
<td>Contributes to meet the security objective by enforcing the Firewall access control policy and the Secure Channel Protocol information flow policy when importing card management data.</td>
</tr>
<tr>
<td>FPT_FLS.1[CCM]</td>
<td>Contributes to meet the security objective by preserving a secure state when failures occur.</td>
</tr>
<tr>
<td>FDP_ACC.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FDP_ACF.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_MSA.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_MSA.3[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_SMF.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>Contributes to cover this security objective by enforcing a Security Domain access control policy (rules and restrictions) that ensures a secure card content management.</td>
</tr>
<tr>
<td>SFR</td>
<td>Rationale</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FCO_NRO.2[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FDP_IFC.2[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FDP_IFF.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UID.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UAU.1[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
<tr>
<td>FIA_UAU.4[SC]</td>
<td>Contributes to meet this security objective by enforcing Secure Channel Protocol information flow control policy that ensures the integrity and the authenticity of card management operations.</td>
</tr>
</tbody>
</table>
7.3.7 Smart Card Platform

OT.SCP.IC

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_ARP.1</td>
<td>Contributes to the coverage of the objective by resetting the card session or terminating the card in case of physical tampering.</td>
</tr>
<tr>
<td>FPR_UNO.1</td>
<td>Contributes to the coverage of the objective by ensuring leakage resistant implementations of the unobservable operations</td>
</tr>
<tr>
<td>FPT_EMSEC.1</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FPT_PHP.3</td>
<td>Contributes to the coverage of the objective by preventing bypassing, deactivation or changing of other security features.</td>
</tr>
</tbody>
</table>

OT.SCP.RECOVERY

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_ARP.1</td>
<td>Contributes to the coverage of the objective by ensuring reinitialization of the Java Card System and its data after card tearing and power failure</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Contributes to the coverage of the objective by preserving a secure state after failure</td>
</tr>
</tbody>
</table>

OT.SCP.SUPPORT

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.1</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>Contributes to meet the objective</td>
</tr>
<tr>
<td>FDP_ROL.1[FIREFWALL]</td>
<td>Contributes to meet the objective</td>
</tr>
</tbody>
</table>

OT.IDENTIFICATION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_SAS.1[SCP]</td>
<td>Covers the objective. The Initialisation Data (or parts of them) are used for TOE identification</td>
</tr>
</tbody>
</table>

7.3.8 SecureBox

OT.SEC_BOX_FW
7.3.9 Random Numbers

OT.RND

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_RNG.1</td>
<td>Covers the objective by providing random numbers of good quality by specifying class DRG.3 of AIS 20. It was chosen to define FCS_RNG.1 explicitly, because Part 2 of the Common Criteria does not contain generic security functional requirements for Random Number generation. (Note that there are security functional requirements in Part 2 of the Common Criteria, which refer to random numbers. However, they define requirements only for the authentication context, which is only one of the possible applications of random numbers.)</td>
</tr>
</tbody>
</table>

7.3.10 Config Applet

OT.CARD-CONFIGURATION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.2[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
<tr>
<td>FDP_IFF.1[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
<tr>
<td>FMT_MSA.3[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
<tr>
<td>FMT_MSA.1[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
</tbody>
</table>
7.3.11 OS Update Mechanism

OT.CONFID-UPDATE-IMAGE.LOAD

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_SMR.1[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
<tr>
<td>FMT_SMF.1[CFG]</td>
<td>Contributes to meet the objective by controlling the ability to modify configuration items.</td>
</tr>
<tr>
<td>FIA_UID.1[CFG]</td>
<td>Contributes to meet the objective by requiring identification before modifying configuration items.</td>
</tr>
</tbody>
</table>

OT.AUTH-LOAD-UPDATE-IMAGE

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.2[OSU]</td>
<td>Contributes to the coverage of the objective by applying the rules of the Information Flow Control policy.</td>
</tr>
<tr>
<td>FDP_IFF.1[OSU]</td>
<td>Contributes to the coverage of the objective by applying the rules of the Information Flow Control policy.</td>
</tr>
<tr>
<td>FMT_MSA.3[OSU]</td>
<td>Contributes to the coverage of the objective by enforcing restrictive default values for the attributes of the OS Update information flow control SFP.</td>
</tr>
<tr>
<td>FMT_SMR.1[OSU]</td>
<td>Contributes to the coverage of the objective by letting S.OSU handle the OS Update procedure.</td>
</tr>
<tr>
<td>FIA_UID.1[OSU]</td>
<td>Contributes to the objective by requiring identification of the authorized images.</td>
</tr>
<tr>
<td>FIA_UAU.1[OSU]</td>
<td>Contributes to the objective by requiring authentication of the authorized images.</td>
</tr>
</tbody>
</table>

OT.SECURE_LOAD_ACODE
SFR

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.2[OSU]</td>
<td>Contributes to the coverage of the objective by ensuring that only allowed versions of the D.UPDATE_IMAGE are accepted and by checking the evidence data of authenticity and integrity.</td>
</tr>
<tr>
<td>FMT_SMR.1[OSU]</td>
<td>Contributes to the coverage of the objective by letting S.OSU handle the OS Update procedure.</td>
</tr>
<tr>
<td>FPT_FLS.1[OSU]</td>
<td>Contributes to the coverage of the objective by ensuring a secure state after interruption of the OS Update procedure (Load Phase).</td>
</tr>
<tr>
<td>FIA_UAU.4[OSU]</td>
<td>Contributes to meet the objective by enforcing authenticity and integrity of D.UPDATE_IMAGE (i.e. Additional Code).</td>
</tr>
</tbody>
</table>

OT.SECURE_AC_ACTIVATION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_MSA.1[OSU]</td>
<td>Contributes to the coverage of the objective by allowing to modify the Current Sequence Number only after successful OS Update procedure.</td>
</tr>
<tr>
<td>FMT_SMR.1[OSU]</td>
<td>Contributes to the coverage of the objective by letting S.OSU handle the OS Update procedure.</td>
</tr>
<tr>
<td>FMT_SMF.1[OSU]</td>
<td>Contributes to the objective by providing information on the currently activated software (Current Sequence Number).</td>
</tr>
<tr>
<td>FPT_FLS.1[OSU]</td>
<td>Contributes to the coverage of the objective by ensuring atomicity of the OS Update procedure (Load Phase).</td>
</tr>
</tbody>
</table>

OT.TOE_IDENTIFICATION

<table>
<thead>
<tr>
<th>SFR</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_SDI.2</td>
<td>Contributes to cover the objective by storing the identification data (D.TOE_IDENTIFICATION) in an integrity protected store.</td>
</tr>
<tr>
<td>FMT_SMF.1[OSU]</td>
<td>Contributes to cover the objective by providing the ability to query the identification data (Current Sequence Number, Reference Sequence Number, Final Sequence Number) of the TOE.</td>
</tr>
</tbody>
</table>

7.3.12 Restricted Mode

OT.ATTACK-COUNTER
7.4 SFR Dependencies

<table>
<thead>
<tr>
<th>Requirements</th>
<th>CC Dependencies</th>
<th>Satisfied Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_ARP.1</td>
<td>FAU_SAA.1 Potential violation analysis</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FAU_SAS.1[SCP]</td>
<td></td>
<td>No other components.</td>
</tr>
<tr>
<td>FCO_NRO.2[SC]</td>
<td>FIA_UID.1 Timing of identification.</td>
<td>FIA_UID.1[SC]</td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FCS_CKM.1</td>
<td>[FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation]</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td>FCS_CKM.4 Cryptographic key destruction</td>
<td></td>
</tr>
<tr>
<td>FCS_CMK.4</td>
<td>[FDP_ITC.1 Import of user data without security attributes, or</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td>FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cryptographic key generation]</td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>[FDP_ITC.1 Import of user data without security attributes, or</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td>FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cryptographic key generation]</td>
<td></td>
</tr>
<tr>
<td>FCS_RNG.1</td>
<td>No dependencies</td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.1[SD]</td>
<td>FDP_ACF.1 Security attribute based access control</td>
<td>FDP_ACF.1[SD]</td>
</tr>
<tr>
<td>FDP_ACC.2[Crescent]</td>
<td>FDP_ACF.1 Security attribute based access control</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FDP_ACC.2[ADEL]</td>
<td>FDP_ACF.1 Security attribute based access control</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FDP_ACC.2[SecureBox]</td>
<td>FDP_ACF.1 Security attribute based access control</td>
<td>FDP_ACF.1[SecureBox]</td>
</tr>
<tr>
<td>FDP_ACC.2[RM]</td>
<td>FDP_ACF.1 Security attribute based access control</td>
<td>FDP_ACF.1[RM]</td>
</tr>
<tr>
<td>FDP_ACF.1[CRESCENT]</td>
<td>FDP_ACF.1 Subset access control</td>
<td>FMT_MSA.3 Static attribute initialisation</td>
</tr>
<tr>
<td>FDP_ACF.1[ADEL]</td>
<td>FDP_ACF.1 Subset access control</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3 Static attribute initialisation</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>FDP_ACF.1[SecureBox]</td>
<td>FDP_ACF.1 Subset access control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_ACF.2[SecureBox]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[SecureBox]</td>
</tr>
<tr>
<td>FDP_ACF.1[SD]</td>
<td>FDP_ACF.1 Subset access control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_ACF.1[SD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[SD]</td>
</tr>
<tr>
<td>FDP_ACF.1[RM]</td>
<td>FDP_ACF.1 Subset access control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_ACF.2[RM]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[RM]</td>
</tr>
<tr>
<td>FDP_IFC.1[SC]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.2[OSU]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.1[SC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.2[CFG]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.1[CFG]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.2[OSU]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.1[OSU]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.1[SC]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.2[SC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[SC]</td>
</tr>
<tr>
<td>FDP_IFC.1[OSU]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.2[OSU]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[OSU]</td>
</tr>
<tr>
<td>FDP_IFC.1[CFG]</td>
<td>FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation</td>
<td>FDP_IFC.2[CFG]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3[CFG]</td>
</tr>
<tr>
<td>FDP_ITC.2[CCM]</td>
<td>[FDP_ACF.1 Subset access control, or FDP_IFC.1 Subset information flow control] FTP_ITC.1 Inter-TSF trusted channel, or FTP_TRP.1 Trusted path FTP_TDC.1 Inter-TSF basic TSF data consistency</td>
<td>FDP_ACC.1[SD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTP_ITC.1[SC]</td>
</tr>
<tr>
<td>FDP_RIP.1[OBJECTS]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FDP_RIP.1[ABORT]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[APDU]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[bArray]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[GlobalArray_Refined]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[KEYS]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[TRANSIENT]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[ADEL]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1[ODEL]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_ROL.1[FIREWALL]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FDP_ROL.1[CCM]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>FDP_ACC.1[SD]</td>
</tr>
<tr>
<td>FDP_SDI.2</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FDP_UIT.1[CCM]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] [FTP_ITC.1 Inter-TSF trusted channel, or FTP_TRP.1 Trusted path]</td>
<td>FDP_ACC.1[SD] FTP_ITC.1[SC]</td>
</tr>
<tr>
<td>FIA_AFL.1[PIN]</td>
<td>FIA_UAU.1 Timing of authentication.</td>
<td>see AppNote in FIA_AFL.1[PIN]</td>
</tr>
<tr>
<td>FIA_ATD.1[AID]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.1[SC]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.1[OSU]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.1[CFG]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.1[RM]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.2[AID]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_USB.1[AID]</td>
<td>FIA_ATD.1 User attribute definition</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FIA_UAU.1[SC]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[SC]</td>
</tr>
<tr>
<td>FIA_UAU.1[RM]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[RM]</td>
</tr>
<tr>
<td>FIA_UAU.1[OSU]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[OSU]</td>
</tr>
<tr>
<td>FIA_UAU.4[SC]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FIA_UAU.4[OSU]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1[JCRE]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.1[JCM]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.1[ADEL]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.1[SC]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FDP_ACC.1[SD] FMT_SMR.1[SD] FMT_SMF.1[SC]</td>
</tr>
<tr>
<td>FMT_MSA.1[SecureBox]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FDP_ACC.2[SecureBox] FMT_SMR.1 FMT_SMF.1[SecureBox]</td>
</tr>
<tr>
<td>FMT_MSA.1[OSU]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FDP_IFC.2[OSU] FMT_SMR.1[OSU] FMT_SMF.1[OSU]</td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>FMT_MSA.1[CFG]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>FMT_IFC.2[CFG]</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FMT_SMR.1[CFG]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMF.1[CFG]</td>
</tr>
<tr>
<td>FMT_MSA.1[SD]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>FDP_ACC.1[SD]</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMF.1[SD]</td>
</tr>
<tr>
<td>FMT_MSA.1[RM]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>FDP_ACC.2[RM]</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMF.1[RM]</td>
</tr>
<tr>
<td>FMT_MSA.2[FIREWALL-JCVM]</td>
<td>[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3[FIREWALL]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.3[JCM]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.3[ADEL]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MSA.3[SecureBox]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[SecureBox]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td>FMT_MSA.3[OSU]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[OSU]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1[OSU]</td>
</tr>
<tr>
<td>FMT_MSA.3[CFG]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[CFG]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1[CFG]</td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FMT_MSA.3[SD]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[SD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td>FMT_MSA.3[SC]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[SC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td>FMT_MSA.3[RM]</td>
<td>FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles</td>
<td>FMT_MSA.1[RM]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_SMR.1[SD]</td>
</tr>
<tr>
<td>FMT_MTD.1[JCRE]</td>
<td>FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_MTD.3[JCRE]</td>
<td>FMT_MTD.1 Management of TSF data</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[ADEL]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[SecureBox]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[OSU]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[CFG]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[SD]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[SC]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1[RM]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>FIA_UID.1 Timing of identification</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_SMR.1[INSTALLER]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_SMR.1[ADEL]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FMT_SMR.1[OSU]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[OSU]</td>
</tr>
<tr>
<td>FMT_SMR.1[CFG]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[CFG]</td>
</tr>
<tr>
<td>FMT_SMR.1[SD]</td>
<td>FIA_UID.1 Timing of identification</td>
<td>FIA_UID.1[SC]</td>
</tr>
<tr>
<td>FPR_UNO.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_EMSEC.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1[INSTALLER]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1[ADEL]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>CC Dependencies</td>
<td>Satisfied Dependencies</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>FPT_FLS.1[ODEL]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1[OSU]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1[CCM]</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_TDC.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FPT_RCV.3[INSTALLER]</td>
<td>AGD_OPE.1 Operational user guidance</td>
<td>see §7.4.3.1 of [5]</td>
</tr>
<tr>
<td>FPT_PHP.3</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FTP_ITC.1[SC]</td>
<td>No dependencies.</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7.41: SFRs Dependencies

7.4.1 Rationale for Exclusion of Dependencies

The dependency FIA_UID.1 of FMT_SMR.1[INSTALLER] is unsupported. This ST does not require the identification of the "installer" since it can be considered as part of the TSF.

The dependency FIA_UID.1 of FMT_SMR.1[ADEL] is unsupported. This ST does not require the identification of the "deletion manager" since it can be considered as part of the TSF.

The dependency FMT_SMF.1 of FMT_MSA.1[JCRE] is unsupported. The dependency between FMT_MSA.1[JCRE] and FMT_SMF.1 is not satisfied because no management functions are required for the Java Card RE.

The dependency FAU_SAA.1 of FAU_ARP.1 is unsupported. The TOE implements the firewall access control SFP, based on which access to the object Implementing FIA_AFL.1[PIN] is organized.

7.5 Security Assurance Requirements Rationale

The selection of assurance components is based on the underlying PP [5].

The Security Target uses the augmentations from the PP, chooses EAL5 and adds the components AVA_VAN.5 ALC_DVS.2, ASE_TSS.2 and ALC_FLR.1

The rationale for the augmentations is the same as in the PP.

The assurance level EAL5 is an elaborated pre-defined level of the CC, part 3 [8]. The assurance components in an EAL level are chosen in a way that they build a mutually supportive and complete set of components. The additional requirements chosen for augmentation do not add any dependencies, which are not already fulfilled for the corresponding requirements contained in EAL5. Therefore, the components AVA_VAN.5, ALC_DVS.2,
ASE_TSS.2 and ALC_FLR.1 and ALC_FLR.1 add additional assurance to EAL5, but the mutual support of the requirements is still guaranteed.
8 TOE summary specification (ASE_TSS)

8.1 Introduction

The Security Functions (SF) introduced in this section realize the SFRs of the TOE. See Table 8.1 for list of all Security Functions. Each SF consists of components spread over several TOE modules to provide a security functionality and fulfill SFRs.

8.2 Security Functionality

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF.JCVM</td>
<td>Java Card Virtual Machine</td>
</tr>
<tr>
<td>SF.CONFIG</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>SF.OPEN</td>
<td>Card Content Management</td>
</tr>
<tr>
<td>SF.CRYPTO</td>
<td>Cryptographic Functionality</td>
</tr>
<tr>
<td>SF.RNG</td>
<td>Random Number Generator</td>
</tr>
<tr>
<td>SF.DATA_STORAGE</td>
<td>Secure Data Storage</td>
</tr>
<tr>
<td>SF.OSU</td>
<td>Operating System Update</td>
</tr>
<tr>
<td>SF.OM</td>
<td>Java Object Management</td>
</tr>
<tr>
<td>SF.MM</td>
<td>Memory Management</td>
</tr>
<tr>
<td>SF.PIN</td>
<td>PIN Management</td>
</tr>
<tr>
<td>SF.PERS_MEM</td>
<td>Persistent Memory Management</td>
</tr>
<tr>
<td>SF.EDC</td>
<td>Error Detection Code API</td>
</tr>
<tr>
<td>SF.HW_EXC</td>
<td>Hardware Exception Handling</td>
</tr>
<tr>
<td>SF.RM</td>
<td>Restricted Mode</td>
</tr>
<tr>
<td>SF.PID</td>
<td>Platform Identification</td>
</tr>
<tr>
<td>SF.SMG_NS</td>
<td>No Side-Channel</td>
</tr>
<tr>
<td>SF.ACC_SBX</td>
<td>Secure Box</td>
</tr>
</tbody>
</table>

Tab. 8.1: Overview of Security Functionality

SF.JCVM

Java Card Virtual Machine

SF.JCVM provides the Java Card Virtual Machine including byte code interpretation and the Java Card Firewall according to the specifications [4, 3]. This fulfills the SFRs FDP_IFC.1[JCVM], FDP_IFF.1[JCVM], FMT_SMF.1, FMT_SMR.1, FDP_ROL.1[FIREWALL], FDP_ACF.1[FIREWALL], FDP_ACC.2[FIREWALL] and FIA_UID.2[AID]. SF.JCVM supports FAU_ARP.1 and FPT_FLS.1 by throwing Java Exceptions according to these specifications. Additionally it supports these SFRs by verification of the integrity of used Java object headers.

Security attributes in SF.JCVM are separated from user data and not accessible by applets to
NXP Semiconductors

fulfill FMT_MSA.1[JCRE] and FMT_MSA.1[JCVGM]. All values for security attributes are initialized and assigned by the system itself which fulfills FMT_MSA.2[FIREFALL-JCVGM], FMT_MSA.3[FIREFALL], and FMT_MSA.3[JCVGM].

SF.JCVM ensures together with SF.PERS_MEM that the system is halted in case non existing Java objects could be referenced after an aborted transaction to fulfill FDP_RIP.1[ABORT].

SF.CONFIG Configuration Management

SF.CONFIG provides means to store Initialization Data and Pre-personalization Data before TOE delivery FAU_SAS.1[SCP].

SF.CONFIG provides means to change configurations of the card. Some configurations can be changed by the customer and some can only be changed by NXP (FDP_IFC.2[CFG], FDP_SIF.1[CFG], FMT_MSA.3[CFG], FMT_MSA.1[CFG], FMT_SMF.1[CFG], FIA_UID.1[CFG]).

SF.CONFIG supports FCS_COP.1 by configuring the behavior of cryptographic operations. Additionally, SF.CONFIG provides proprietary commands to select (FIA_UID.1[SC]) the OS update mechanism SF.OSU and to reset the OS to an initial state (FAU_ARP.1 and FPT_FLS.1).

SF.OPEN Card Content Management

SF.OPEN provides the card content management functionality according to the GlobalPlatform Specification [26] and GlobalPlatform Amendments A [16], D [17], E [23] and F [25]. This supports FCO_NRO.2[SC], FDP_ACC.1[SD], FDP_ACF.1[SD], FDP_UIT.1[CCM], FDP_SIF.1[SD], FDP_IFC.2[SC], FIA_UID.1[SC], FIA_UID.2[AID], FIA_USB.1[AID], FMT_MSA.1[SC], FMT_MSA.1[SD], FMT_MSA.3[SC], FMT_MSA.3[SD], FMT_SMF.1[ADEL], FMT_SMF.1[SC], FMT_SMF.1[SC], FMT_SMF.1[SD], FTP_ITC.1[SC], FMT_MSA.3[ADEL], FMT_SMF.1[INSTALLER], FMT_SMF.1[ADEL], FDP_JTC.2[CCM], FDP_ROL.1[CCM], FIA_UAU.1[SC], FIA_UAU.4[SC] and FCS_COP.1 (for DAP verification). In addition to the GP specification, the Java Card Runtime Environment specification [4] is followed to support FDP_ACC.2[ADEL], FDP_ACF.1[ADEL], FMT_MSA.3[SC], FMT_MSA.3[SD], FMT_MTD.1[JCRE], FMT_MTD.3[JCRE], FPT_FLS.1[INSTALLER], FDP_RIP.1[bArray], FDP_RIP.1[ADEL], FPT_TDC.1, FPT_FLS.1[ADEL], and FPT_FLS.1[CCM] for application loading, installation, and deletion.

AID management is provided by SF.OPEN according to the GlobalPlatform Specification [26], the Java Card Runtime Environment Specification [4], and the Java Card API Specification [2] to support FIA_ATD.1[AID].

SF.OPEN is part of the TOE runtime environment and thus separated from other applications to fulfill FMT_MSA.1[ADEL]. It supports FAU_ARP.1 and FPT_FLS.1 by responding with error messages and fulfills FPT_RCV.3[INSTALLER] by inherent memory cleanup in case of aborted loading and installation.

SF.CRYPTO Cryptographic Functionality
SF.CRYPTO provides key creation, key management, key deletion and cryptographic functionality. It provides the API in accordance to the Java Card API Specification [2] to fulfill FCS.CKM.1, FCS.CKM.4, and FCS.COP.1. Proprietary solutions (e.g., key lengths not supported by the Java Card API) are supported following the Java Card API. SF.CRYPTO uses SF.DATA_STORAGE to support FCS.CKM.1, FCS.CKM.4, FDP.RIP.1[KEYS], and FDP.SDI.2. The Security Software certified with the TOE hardware supports FCS.COP.1 and FPR.UNO.1.

This TSF enforces protection of Key material during cryptographic functions processing and Key Generation, against state-of-the-art attacks, including IC power consumption analysis (FPT.EMSEC.1).

SF.RNG Random Number Generator

SF.RNG provides secure random number generation to fulfill FCS.CKM.1 and FCS.RNG.1. Random numbers are generated by the Security Software certified with the TOE hardware. SF.RNG provides an API according to the Java Card API Specification [2] to generate random numbers according to FCS.RNG.1.

SF.DATA_STORAGE Secure Data Storage

SF.DATA_STORAGE provides a secure data storage for confidential data. It is used to store cryptographic keys (supports FCS.CKM.1 and FCS.CKM.4) and to store PINs (supports FIA.AFL.1[PIN]). All data stored by SF.DATA_STORAGE is CRC32 integrity protected to fulfill FDP.SDI.2, FAU.ARP.1, and FPT.FLS.1. The stored data is AES encrypted to fulfill FPR.UNO.1.

SF.OSU Operating System Update

SF.OSU provides secure functionality to update the JCOP5.1 OS or UpdaterOS itself with an image created by a trusted off-card entity (FMT.SMR.1[OSU], FMT.SMF.1[OSU]). SF.OSU allows an authenticated OSU command (FIA.UAU.1[OSU]) to upload an integrity and confidentiality protected update image to update to another operating system version (FDP.IFC.2[OSU], FDP.IFF.1[OSU]). User authentication is based on the verification of signed OSU commands to fulfill FIA.UAU.1[OSU] and FIA.UID.1[OSU]. Integrity protection of OSU commands uses ECDSA, SHA-256 and CRC verification to fulfill FDP.IFF.1[OSU]. Confidentiality of the update image is ensured by ECDH and AES encryption to fulfill FDP.IFF.1[OSU]. SF.OSU ensures that the system stays in a secure state in case of invalid or aborted update procedures to fulfill FPT.FLS.1[OSU] and ensures that the information identifying the currently running OS is modified and the updated code is activated only after successful OS Update procedure FMT.MSA.3[OSU], FMT.MSA.1[OSU].

SF.OM Java Object Management

SF.OM provides the object management for Java objects which are processed by SF.JCVM. It provides object creation (FDP.RIP.1[OBJECTS]) and garbage collection according to the Java Card Runtime Environment Specification [4] to fulfill FDP.RIP.1[ODEL] and FPT.FLS.1[ODEL].
SF.MM throws an Java Exception in case an object cannot be created as requested due to too less available memory. This fulfills FAU_ARP.1 and FPT_FLS.1.

SF.MM Memory Management

SF.MM provides deletion of memory for transient arrays, global arrays, and logical channels according to the Java Card Runtime Environment Specification [4]. Thus, it fulfills FDP_RIP.1[TRANSIENT] by granting access to and erasing of CLEAR_ON_RESET and CLEAR_ON_DESELECT transient arrays. It supports FIA_ATD.1[AID] when using logical channels and it fulfills FDP_RIP.1[APDU] and FDP_RIP.1[bArray] by clearing the APDU buffers for new incoming data and by clearing the bArray during application installation.

SF.PIN PIN Management

SF.PIN provides secure PIN management by using SF.DATA_STORAGE for PIN objects specified in the Java Card API Specification [2] and the GlobalPlatform Specification [18]. Thus, it fulfills FDP_SDI.2, FIA_AFL.1[PIN], and FPR_UNO.1.

SF.PERS_MEM Persistent Memory Management

SF.PERS_MEM provides atomic write operations and transaction management according to the Java Card Runtime Environment Specification [4]. This supports FAU_ARP.1, FPT_FLS.1, and FDP_ROL.1[FireWall].

SF.PERS_MEM supports FDP_RIP.1[ABORT] together with SF.JCVM by halting the system in case of object creation in aborted transactions.

Low level write routines to persistent memory in SF.PERS_MEM perform checks for defect memory cells to fulfill FAU_ARP.1 and FPT_FLS.1.

SF.EDC Error Detection Code API

SF.EDC provides an Java API for user applications to perform high performing integrity checks based on a checksum on Java arrays [33]. The API throws a Java Exception in case the checksum in invalid. This supports FAU_ARP.1 and FPT_FLS.1.

SF.HW_EXC Hardware Exception Handling

SF.HW_EXC provides software exception handler to react on unforeseen events captured by the hardware (hardware exceptions). SF.HW_EXC catches the hardware exceptions, to ensure the system goes to a secure state to fulfill FAU_ARP.1 and FPT_FLS.1, as well as to increase the attack counter in order to resist physical manipulation and probing to fulfill FPT_PHP.3.

SF.RM Restricted Mode
SF.RM provides a restricted mode that is entered when the Attack Counter reaches its limit. In restricted mode only limited functionality is available. Only the issuer is able to reset the Attack Counter to leave the restricted mode. This supports FDP_ACC.2[RM], FDP_ACF.1[RM], FMT_MSA.3[RM], FMT_MSA.1[RM], and FMT_SMF.1[RM]. SF.RM only allows a limited set of operations to not identified and not authenticated users when in restricted mode. All other operations require identification and authentication (FIA_UID.1[RM], FIA_UAU.1[RM]).

SF.PID Platform Identification

SF.PID provides a platform identifier. For elements that can be identified see 1.8. This feature supports FAU_SAS.1.1[SCP] by using initialization data that is used for platform identification.

SF.SMG_NSC No Side-Channel

The TSF ensures that during command execution there are no usable variations in power consumption (measurable at e.g. electrical contacts) or timing (measurable at e.g. electrical contacts) that might disclose cryptographic keys or PINs. All functions of SF.CRYPTO except for SHA are resistant to side-channel attacks (e.g. timing attack, SPA, DPA, EMA, DEMA) (see FPR_UNO.1 and FPT_EMSEC.1).

SF.ACC_SBX Secure Box

SF.ACC_SBX provides an environment to securely execute native code from third parties. SF.ACC_SBX ensures that only program code and data contained in the secure box can be accessed from within this secure box and therefore cannot harm, manipulate, or influence other parts of the TOE. This fulfills the SFRs FDP_ACC.2[SecureBox], FDP_ACF.1[SecureBox] and FMT_MSA.1[SecureBox]. Native code executed in the Secure Box is executed in Application Unprivileged Mode. Access to the CPU mode, memory outside the Secure Box, the MMU segment table, and Special Function Registers which allow configuration of the MMU and allow System Management is prohibited for code executed in the Secure Box to fulfill FDP_ACF.1[SecureBox]. The MMU segment table to configure the MMU is part of the Secure Box which fulfills FMT_MSA.3[SecureBox]. This MMU segment table can be modified during the prepersonalization in accordance with FMT_MSA.3[SecureBox] to specify alternative settings for initially restrictive values for the MMU segment table. This supports FMT_SMF.1[SecureBox].

8.3 Protection against Interference and Logical Tampering

The protection of JCOP5.1 against Interference and Logical Tampering is implemented in software within the TOE and supported by the hardware of the micro controller.

The software protection of the TOE makes use of software security services which allow to detect and react on manipulation of the TOE. Two types of reactions are used: If invalid data from outside the TOE is detected then it is assumed that the TOE was used in a wrong way. This is indicated by an appropriate Status Word or Exception.
Detected deviations from the physical operating conditions and inconsistencies of internal states and program flow however are considered to be an attack to the TOE. In such cases an internal Attack Counter is increased. Once the Attack Counter reaches the maximum value, the TOE will go into Restricted Mode.

Typical software security mechanisms implemented in the TOE are e.g.:

- Complex patterned values are used instead of boolean values which are sensible to tampering (only one bit needs to be changed to manipulate a false into a true).
- Small random delays are inserted in the program flow to make successful physical interfering more difficult.
- Secret information like Keys or PINs are stored encrypted in the TOE. The Masterkey to decrypt these is not accessible during normal operation.
- Critical data is read after it has been written to non volatile memory.
- Enhanced cryptographic support is based on the certified Security Software for DES, AES, ECC and RSA including protection against fault injection and random number generation.
- Critical values (like PINs) are compared timing-invariant. This prevents from side channel attacks.

A full list of software countermeasures is contained in ADV_ARC.

Further protection against Tampering and Logical Interference is realized by the MMU implemented in hardware. The MMU is able to perform access control to all types of memory. The special function registers access can be restricted by the bridges between the CPU and the peripherals.

JCOP5.1 defines several MMU contexts which restrict access to memory areas. The Master key is stored in specific coprocessor registers and blocked for reading/writing during JCOP operation. Additionally Interference and Logical Tampering is prevented by hardware security services. JCOP5.1 OS runs on a certified smart card HW platform which protects against bypass by physical and logical means such as:

- cryptographic coprocessors (for symmetric and asymmetric cryptography) protected against DPA and DFA,
- enhanced security sensors for clock frequency range, low and high temperature sensor, supply voltage sensors Single Fault Injection (SFI) attack detection, light sensors, and
- encryption of data stored in persistent and transient memory.

8.4 Protection against Bypass of Security Related Actions

JCOP5.1 prevents bypassing security related actions by several software counter measures. Different mechanisms are used depending on the software environment.

Generally all input parameter are validated and in case of incorrect parameters the program flow is interrupted. Such event is indicated by an appropriate Status Word or Exception. This prevents the TOE from being attacked by undefined or unauthorized commands or data.

Basic protection is contributed by implementation of following standards within the TOE:
The following mechanisms ensure that it is not possible to access information from the Java Layer without being authorized to do so.

- Status informations like Life Cycle of Applets or the Authentication State of a Secure Channel are stored in complex patterned values which protects them from manipulation.
- Correct order of Java Card Byte Code execution is ensured by the Virtual Machine which detects if Byte Code of a wrong context is executed.
- Correct processing of Byte Codes is ensured by checking at the beginning and end of Byte Code execution that the same Byte Code is executed.

Execution of native code in JCOP5.1 is protected by following mechanisms:

- Critical execution paths of the TOE functionality are protected by program flow and call tree protection. This ensures that it is not possible to bypass security relevant checks and verifications.
- Critical conditions are evaluated twice. This ensures that physical attacks on the compared values are detected during security relevant checks and verifications.
- The true case in if-conditions leads to the less critical program flow or to an error case. This prevents attacks on the program flow during security relevant checks and verifications.
- At the exit of critical loops it is checked that the whole loop was processed. This prevents from manipulation of the program flow and jumping out of the loop.
- Critical parameters are check for consistency. This prevents from attacks with manipulated parameters.

Further protection is achieved by using different buffers for APDUs in case more than one physical interface is supported. This prevents bypassing the state machine on one physical interface by the other interface.
9 Contents

1 ST Introduction (ASE_INT) ... 2
 1.1 ST Reference and TOE Reference 2
 1.2 TOE Overview ... 2
 1.2.1 TOE Type .. 4
 1.2.2 Usage and Major Security Features of the TOE 3
 1.2.3 Required non-TOE Hardware/Software/Firmware 6
 1.3 TOE Description ... 7
 1.3.1 TOE Components and Composite Certification 7
 1.3.2 TOE Life Cycle .. 10
 1.3.3 TOE Identification 14
 1.3.4 TOE Delivery .. 15
 1.3.5 Evaluated Package Types 15

2 Conformance Claims (ASE_CCL) 16
 2.1 CC Conformance Claim .. 16
 2.2 Package Claim .. 16
 2.3 PP Claim ... 16
 2.4 Conformance Claim Rationale 17
 2.4.1 TOE Type .. 17
 2.4.2 SPD Statement .. 17
 2.4.3 Security Objectives Statement 19
 2.4.4 Security Functional Requirements Statement 21

3 Security Aspects ... 24
 3.1 Confidentiality .. 24
 3.2 Integrity ... 24
 3.3 Unauthorized Executions 25

4 Security Problem Definition (ASE_SPD) 31
 4.1 Assets ... 31
 4.2 Threats ... 33
 4.2.1 Confidentiality ... 33
 4.2.2 Integrity ... 33
 4.2.3 Identity Usurpation 34
 4.2.4 Unauthorized Execution 35
 4.2.5 Denial of Service ... 35
 4.2.6 Card Management ... 35
 4.2.7 Services .. 36
 4.2.8 Miscellaneous .. 36
 4.2.9 Random Numbers ... 36
 4.2.10 Config Applet ... 37
 4.2.11 OS Update ... 37
 4.2.12 Secure Box ... 37
 4.2.13 Restricted Mode ... 37
 4.3 Organisational Security Policies 38

5 Security Objectives ... 41
 5.1 Security Objectives for the TOE 41
5.1.1 Identification 41 7.1.5 ODELG Security Functional Requirements 87
5.1.2 Execution 41 7.1.6 CarG Security Functional Requirements 88
5.1.3 Services 42 7.1.7 EMG Security Functional Requirements 97
5.1.4 Object Deletion 42 7.1.8 Further Security Functional Requirements 97
5.1.5 Applet Management 42 7.1.9 SecureBox Security Functional Requirements 100
5.1.6 Card Management 43 Configuration Security Functional Requirements 102
5.1.7 Smart Card Platform 44 7.1.10 OS update Security Functional Requirements 105
5.1.8 SecureBox 45 Restricted Mode Security Functional Requirements 108
5.1.9 Random Numbers 45 7.2 Security Assurance Requirements 111
5.1.10 OS Update Mechanism 45 Security Requirements Rationale for the TOE 111
5.1.11 Config Applet 46 7.3 Identification 111
5.1.12 Restricted Mode 46 7.3.2 Execution 112
5.2 Security Objectives for the Operational Environment 47 7.3.3 Services 118
7.3.4 Object Deletion 120
7.3.5 Applet Management 120
7.3.6 Card Management 125
7.3.7 Smart Card Platform 128
7.3.8 Random Numbers 129
7.3.9 SecureBox 128
7.3.10 Config Applet 129
7.3.11 OS Update Mechanism 130
7.3.12 Restricted Mode 131
7.4 SFR Dependencies 132
6 Extended Components Definition (ASE_ECD) 49 7.4.1 Rationale for Exclusion of Dependencies 139
6.1 Definition of Family "Generation of random numbers (FCS_RNG)" 49 7.5 Security Assurance Requirements Rationale 139
6.1.1 Family behavior 49 8 TOE summary specification (ASE_TSS) 141
6.2 Definition of Family "Audit Data Storage (FAU_SAS)" 50 8.1 Introduction 141
6.2.1 Family behavior 50 8.2 Security Functionality 141
6.3 Definition of Family "TOE emanation (FPT_EMSEC)" 50 8.4 SFR Dependencies 132
6.3.1 Family behavior 51 8.4.1 Rationale for Exclusion of Dependencies 139
7 Security Requirements (ASE_REQ) 52 7.5 Security Assurance Requirements Rationale 139
7.1 Security Functional Requirements 58
7.1.1 COREG_LC Security Functional Requirements 58
7.1.2 INSTG Security Functional Requirements 81
7.1.3 ADELG Security Functional Requirements 83
7.1.4 RMIG Security Functional Requirements 87
8 Evaluation Version ©NXP B.V. 2019. All rights reserved.
Evaluation documentation 149 of 155
Rev. 2.7 – 2023-03-17
10 Bibliography

[11] ETSI. ETSI TS 102 622 v11.0.0 Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller Interface (HCI), 9 2011.

[12] ETSI. ETSI TS 102 622 v12.1.0 Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller Interface (HCI), 10 2014.

[33] NXP. JCOP 5.1 R1.00.1, User Guidance Manual, Rev. 2.4, 2023-03-14.

[34] NXP. SN100 Series - Secure Element with Crypto Library, Security Target Lite, NXP Semiconductors, Revision 3.5, 21 April 2021.

11 Legal information

11.1 Definitions

Draft – The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability – Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes – NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use – NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or nuclear control systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications – Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control – This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products – This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

11.3 Licenses

ICs with DPA Countermeasures functionality

NXP ICs containing functionality implementing countermeasures to Differential Power Analysis and Simple Power Analysis are produced and sold under applicable license from Cryptography Research, Inc.
11.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

11.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

MIFARE – is a trademark of NXP B.V.